Characterizing gender stereotypes in popular fiction: A machine learning approach

Chengyue Zhang 1 * , Ben Wu 2
More Detail
1 Phillips Exeter Academy, Exeter, NH, USA
2 University of California, Riverside, CA, USA
* Corresponding Author
Online Journal of Communication and Media Technologies, Volume 13, Issue 4, Article No: e202349. https://doi.org/10.30935/ojcmt/13644
OPEN ACCESS   1553 Views   1112 Downloads   Published online: 07 Sep 2023
Download Full Text (PDF)

ABSTRACT

Gender representation portrayed in popular mass media is known to reflect and reinforce societal gender stereotypes. This research uses two methods of natural language processing–Word2Vec and bidirectional encoder representations from transformers (BERT) model–to analyze gender representation in popular fiction and quantify gender bias with gender bias score. Word2Vec, which represents the words in vectorized format, can capture implicit human gender bias with the geometry relationship between word vectors. BERT, a newer pre-trained deep learning model, is specialized in understanding words in the larger context it appears in. The research will compare the results obtained from Word2Vec and BERT. With book check out records from the Seattle Public Library checkout dataset–an ongoing open source dataset from the public library system of Seattle, WA–the research aims to identify evolutionary trends of gender bias in popular fiction and analyze consumer preferences regarding gender representation.

CITATION

Zhang, C., & Wu, B. (2023). Characterizing gender stereotypes in popular fiction: A machine learning approach. Online Journal of Communication and Media Technologies, 13(4), e202349. https://doi.org/10.30935/ojcmt/13644

REFERENCES

  • Abbott, T. B. (2013). The trans/romance dilemma in Transamerica and other films. The Journal of American Culture, 36(1), 32-41. https://doi.org/10.1111/jacc.12011
  • Adichie, C. N. (2009). The danger of a single story. TED. https://www.ted.com/talks/chimamanda_adichie_the_danger_of_a_single_story
  • Amossy, R., & Heidingsfeld, T. (1984). Stereotypes and representation in fiction. Poetics Today, 5(4), 689-700. https://doi.org/10.2307/1772256
  • Asr, F. T., Mazraeh, M., Lopes, A., Gautam, V., Gonzales, J., Rao, P., & Taboada, M. (2021). The gender gap tracker: Using natural language processing to measure gender bias in media. PLoS ONE, 16(1), 1-28. https://doi.org/10.1371/journal.pone.0245533
  • Atwood, M. (2017). Margaret Atwood on what ‘The handmaid’s tale’means in the age of Trump. The New York Times. https://www.nytimes.com/2017/03/10/books/review/margaret-atwood-handmaids-tale-age-of-trump.html
  • Babaeianjelodar, M., Lorenz, S., Gordon, J., Matthews, J., & Freitag, E. (2020). Quantifying gender bias in different corpora. In Proceedings of the Companion Web Conference 2020. https://doi.org/10.1145/3366424.3383559
  • Bamman, D., Eisenstein, J., & Schnoebelen, T. (2014). Gender identity and lexical variation in social media. Journal of Sociolinguistics, 18(2), 135-160. https://doi.org/10.1111/josl.12080
  • Bamman, D., Underwood, T., & Smith, N. A. (2014). A Bayesian mixed effects model of literary character. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (pp. 370-379). https://doi.org/10.3115/v1/P14-1035
  • Baran, R. A. (2013). Re-interpretation of library program: The Seattle Public Library [Master’s thesis, Middle East Technical University].
  • Basta, C., Costa-Jussà, M. R., & Casas, N. (2019). Evaluating the underlying gender bias in contextualized word embeddings. ArXiv,1904.08783. https://doi.org/10.18653/v1/W19-3805
  • Beauchamp, G. (2009). The politics of The handmaid’s tale. The Midwest Quarterly, 51(1).
  • Beltrán, M. (2018). Representation. In M. Kackman, & M. C. Kearney (Eds.), The craft of criticism: Critical media studies in practice (pp. 94-106). Routledge. https://doi.org/10.4324/9781315879970-9
  • Betti, L., Abrate, C., & Kaltenbrunner, A. (2023). Large scale analysis of gender bias and sexism in song lyrics. EPJ Data Science, 12, 10. https://doi.org/10.1140/epjds/s13688-023-00384-8
  • Beukeboom, C., & Burgers, C. (2019). How stereotypes are shared through language: A review and introduction of the social categories and stereotypes communication (SCSC) framework. Review of Communication Research, 7. https://doi.org/10.12840/issn.2255-4165.017
  • Bleich, E., Bloemraad, I., & De Graauw, E. (2015). Migrants, minorities and the media: Information, representations and participation in the public sphere. Journal of Ethnic and Migration Studies, 41(6), 857-873. https://doi.org/10.1080/1369183X.2014.1002197
  • Blodgett, S. L., Barocas, S., Daumé III, H., & Wallach, H. (2020). Language (technology) is power: A critical survey of “bias” in NLP. ArXiv, 2005.14050. https://doi.org/10.18653/v1/2020.acl-main.485
  • Boghrati, R., & Berger, J. (2023). Quantifying cultural change: Gender bias in music. Journal of Experimental Psychology: General, 152(9), 2591-2602. https://doi.org/10.1037/xge0001412
  • Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V., & Kalai, A. (2016). Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. ArXiv:1607.06520.
  • Bonomi, A. E., Altenburger, L. E., & Walton, N. L. (2013). “Double crap!” abuse and harmed identity in fifty shades of grey. Journal of Women’s Health, 22(9), 733-744. https://doi.org/10.1089/jwh.2013.4344
  • Booker, M. K., & Clapper, T. H. (1995). Review of the dystopian impulse in modern literature: Fiction as social criticism. Utopian Studies, 6(2), 147-149.
  • Brooks, D. E., & Hébert, L. P. (2006). Gender, race, and media representation. Handbook of Gender and Communication, 16, 297-317. https://doi.org/10.4135/9781412976053.n16
  • Burns, K., Hendricks, L. A., Saenko, K., Darrell, T., & Rohrbach, A. (2019). Women also snowboard: Overcoming bias in captioning models. arXiv.org. https://arxiv.org/abs/1803.09797
  • Caliskan, A., Bryson, J. J., & Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183-186. https://doi.org/10.1126/science.aal4230
  • Castañeda, M. (2018). The power of (mis)representation: Why racial and ethnic stereotypes in the media matter. Challenging Inequalities: Readings in Race, Ethnicity, and Immigration, 60.
  • Chapman, B. V., Rooney, M. K., Ludmir, E. B., De La Cruz, D., Salcedo, A., Pinnix, C. C., Das, P., Jagsi, R., Thomas Jr, C. R., & Holliday, E. B. (2020). Linguistic biases in letters of recommendation for radiation oncology residency applicants from 2015 to 2019. Journal of Cancer Education, 37(4), 965-972. https://doi.org/10.1007/s13187-020-01907-x
  • Charlesworth, T. E. S., Yang, V., Mann, T. C., Kurdi, B., & Banaji, M. R. (2021). Gender stereotypes in natural language: Word embeddings show robust consistency across child and adult language corpora of more than 65 million words. Psychological Science, 32(2), 218-240. https://doi.org/10.1177/0956797620963619
  • Chen, Y., Mahoney, C., Grasso, I., Wali, E., Matthews, A., Middleton, T., Njie, M., & Matthews, J. (2021). Gender bias and under-representation in natural language processing across human languages. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. https://doi.org/10.1145/3461702.3462530
  • Clement, M., Fabel, S., & Schmidt-Stolting, C. (2006). Diffusion of hedonic goods: A literature review. International Journal on Media Management, 8(4), 155-163. https://doi.org/10.1207/s14241250ijmm0804_1
  • Costa-Jussà, M. R. (2019). An analysis of gender bias studies in natural language processing. Nature Machine Intelligence, 1, 495-496. https://doi.org/10.1038/s42256-019-0105-5
  • Crabb, P. B., & Bielawski, D. (1994). The social representation of material culture and gender in children’s books. Sex Roles, 30, 69-79. https://doi.org/10.1007/BF01420740
  • Dahlgren, P. (2000). Television and the public sphere: Citizenship, democracy and the media. In SAGE knowledge. SAGE. https://doi.org/10.4135/9781446250617
  • Dai, A. M., Olah, C., & Le, Q. V. (2015). Document embedding with paragraph vectors. ArXiv:1507.07998. https://arxiv.org/abs/1507.07998
  • Delgado-Rodriguez, M., & Llorca, J. (2004). Bias. Journal of Epidemiology & Community Health, 58(8), 635-641. https://doi.org/10.1136/jech.2003.008466
  • Delobelle, P., Tokpo, E. K., Calders, T., & Berendt, B. (2021). Measuring fairness with biased rulers: A survey on quantifying biases in pretrained language models. arXiv, 2112.07447. https://doi.org/10.18653/v1/2022.naacl-main.122
  • Dev, S., Monajatipoor, M., Ovalle, A., Subramonian, A., Phillips, J. M., & Chang, K.-W. (2021). Harms of gender exclusivity and challenges in non-binary representation in language technologies. ArXiv, 2108.12084. https://doi.org/10.18653/v1/2021.emnlp-main.150
  • Devinney, H., Björklund, J., & Björklund, H. (2022). Theories of “gender” in NLP bias research. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (pp. 2083-2102). https://doi.org/10.1145/3531146.3534627
  • Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv, 1810.04805.
  • Dhingra, B., Liu, H., Salakhutdinov, R., & Cohen, W. W. (2017). A comparative study of word embeddings for reading comprehension. arXiv, 1703.00993.
  • Dixon-Fyle, S., Dolan, K., Hunt, V., & Prince, S. (2020). Diversity wins: How inclusion matters. www.mckinsey.com. https://www.mckinsey.com/featured-insights/diversity-and-inclusion/diversity-wins-how-inclusion-matters
  • Dolci, T. (2022). Fine-tuning language models to mitigate gender bias in sentence encoders. In Proceedings of the IEEE 8th International Conference on Big Data Computing Service and Applications (pp. 175-176). https://doi.org/10.1109/BigDataService55688.2022.00036
  • Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., & Tang, J. (2021). All NLP tasks are generation tasks: A general pretraining framework. ArXiv, 2103.10360. https://arxiv.org/abs/2103.10360
  • Fast, E., Vachovsky, T., & Bernstein, M. S. (2016). Shirtless and dangerous: Quantifying linguistic signals of gender bias in an online fiction writing community. ArXiv, 1603.08832. https://arxiv.org/abs/1603.08832
  • Fiske, S. T. (1993). Controlling other people: The impact of power on stereotyping. American Psychologist, 48(6), 621-628. https://doi.org/10.1037/0003-066x.48.6.621
  • Friedman, S., Schmer-Galunder, S., Chen, A., & Rye, J. (2019). Relating word embedding gender biases to gender gaps: A cross-cultural analysis. Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-3803
  • Fryberg, S. A., Markus, H. R., Oyserman, D., & Stone, J. M. (2008). Of warrior chiefs and Indian princesses: The psychological consequences of American Indian mascots. Basic and Applied Social Psychology, 30(3), 208-218. https://doi.org/10.1080/01973530802375003
  • Fürsich, E. (2010). Media and the representation of others. International Social Science Journal, 61(199), 113-130. https://doi.org/10.1111/j.1468-2451.2010.01751.x
  • Garg, N., Schiebinger, L., Jurafsky, D., & Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of Sciences, 115(16), E3635-E3644. https://doi.org/10.1073/pnas.1720347115
  • Glick, P., & Fiske, S. T. (2011). Ambivalent sexism revisited. Psychology of Women Quarterly, 35(3), 530-535. https://doi.org/10.1177/0361684311414832
  • Goldfarb-Tarrant, S., Marchant, R., Sánchez, R. M., Pandya, M., & Lopez, A. (2020). Intrinsic bias metrics do not correlate with application bias. arXiv, 2012.15859.
  • Green, M. C., Garst, J., & Brock, T. C. (2003). The power of fiction: Determinants and boundaries. In L. J. Shrum (Ed.), The psychology of entertainment media. Erlbaum Psych Press.
  • Guthrie, D., Allison, B., Liu, W., Guthrie, L., & Wilks, Y. (2006). A closer look at skip-gram modelling. European Language Resources Association.
  • Hagiwara, N., Slatcher, R. B., Eggly, S., & Penner, L. A. (2017). Physician racial bias and word use during racially discordant medical interactions. Health Communication, 32(4), 401-408. https://doi.org/10.1080/10410236.2016.1138389
  • Hall, S. (1997). Culture and power. Radical Philosophy, 86(27), 24-41. https://doi.org/10.1177/004839319702700102
  • Hamilton, M. C., Anderson, D., Broaddus, M., & Young, K. (2006). Gender stereotyping and under-representation of female characters in 200 popular children’s picture books: A twenty-first century update. Sex Roles, 55(11-12), 757-765. https://doi.org/10.1007/s11199-006-9128-6
  • Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2018). Diachronic word embeddings reveal statistical laws of semantic change. ArXiv, 1605.09096. https://arxiv.org/abs/1605.09096
  • Hanne, M. (1994). The power of the story: Fiction and political change. Berghahn Books.
  • Harrington, C. (2021). What is ‘toxic masculinity’ and why does it matter? Men and Masculinities, 24(2), 345-352. https://doi.org/10.1177/1097184X20943254
  • Hovy, D., & Prabhumoye, S. (2021). Five sources of bias in natural language processing. Language and Linguistics Compass, 15(8), e12432. https://doi.org/10.1111/lnc3.12432
  • Huang, G., Li, K., & Li, H. (2019). Show, not tell: The contingency role of infographics versus text in the differential effects of message strategies on optimistic bias. Science Communication, 41(6), 732-760. https://doi.org/10.1177/1075547019888659
  • Hubler, A. E. (2000). Beyond the image: Adolescent girls, reading, and social reality. NWSA Journal, 12(1), 84-99. https://doi.org/10.2979/NWS.2000.12.1.84
  • James, S. E., Herman, J., Keisling, M., Mottet, L., & Anafi, M. (2019). 2015 U.S. transgender survey (USTS). https://www.icpsr.umich.edu/web/RCMD/studies/37229
  • Johnson, D. R., Huffman, B. L., & Jasper, D. M. (2014). Changing race boundary perception by reading narrative fiction. Basic and Applied Social Psychology, 36(1), 83-90. https://doi.org/10.1080/01973533.2013.856791
  • Johnson, R. (2008). Assessment of bias with emphasis on method comparison. The Clinical Biochemist. Reviews, 29(Suppl 1), S37-S42.
  • Kahn, J. H., Tobin, R. M., Massey, A. E., & Anderson, J. A. (2007). Measuring emotional expression with the linguistic inquiry and word count. The American Journal of Psychology, 120(2), 263-286. https://doi.org/10.2307/20445398
  • Kearl, H. (2014). Unsafe and harassed in public spaces: A national street harassment report. ncvc.dspacedirect.org. https://ncvc.dspacedirect.org/handle/20.500.11990/479
  • Khadilkar, K., KhudaBukhsh, A. R., & Mitchell, T. M. (2022). Gender bias, social bias, and representation in Bollywood and Hollywood. Patterns, 3(4), 100486. https://doi.org/10.1016/j.patter.2022.100486
  • Khan, U., Dhar, R., & Wertenbroch, K. (2005). A behavioral decision theory perspective on hedonic and utilitarian choice. In D. Mick, & S. Ratneshwar (Eds.), Inside consumption: Consumer motives, goals, and desires. Routledge.
  • Kidd, M. A. (2016). Archetypes, stereotypes and media representation in a multi-cultural society. Procedia-Social and Behavioral Sciences, 236, 25-28. https://doi.org/10.1016/j.sbspro.2016.12.007
  • Kraicer, E., & Piper, A. (2019). Social characters: The hierarchy of gender in contemporary English-language fiction. Journal of Cultural Analytics, 3(2). https://doi.org/10.22148/16.032
  • Kupers, T. A. (2005). Toxic masculinity as a barrier to mental health treatment in prison. Journal of Clinical Psychology, 61(6), 713-724. https://doi.org/10.1002/jclp.20105
  • Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015). From word embeddings to document distances. proceedings.mlr.press. https://proceedings.mlr.press/v37/kusnerb15.html
  • Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to generate a good word embedding. IEEE Intelligent Systems, 31(6), 5-14. https://doi.org/10.1109/MIS.2016.45
  • Lai, Y. A., Lalwani, G., & Zhang, Y. (2020). Context analysis for pre-trained masked language models. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020 (pp. 3789-3804). https://doi.org/10.18653/v1/2020.findings-emnlp.338
  • Larson, B. (2017). Gender as a variable in natural-language processing: Ethical considerations. Association for Computational Linguistics. https://doi.org/10.18653/v1/W17-1601
  • Lau, J. H., & Baldwin, T. (2016). An empirical evaluation of doc2vec with practical insights into document embedding generation. ArXiv, 1607.05368. https://doi.org/10.18653/v1/W16-1609
  • Lauscher, A., Crowley, A., & Hovy, D. (2022). Welcome to the modern world of pronouns: Identity-inclusive natural language processing beyond gender. ArXiv, 2202.11923. https://arxiv.org/abs/2202.11923
  • Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the International Conference on Machine Learning (pp. 1188-1196). PMLR.
  • Leavitt, P. A., Covarrubias, R., Perez, Y. A., & Fryberg, S. A. (2015). “Frozen in time”: The impact of native American media representations on identity and self-understanding. Journal of Social Issues, 71(1), 39-53. https://doi.org/10.1111/josi.12095
  • Li, S., Fant, A. L., McCarthy, D. M., Miller, D., Craig, J., & Kontrick, A. (2017). Gender differences in language of standardized letter of evaluation narratives for emergency medicine residency applicants. AEM Education and Training, 1(4), 334-339. https://doi.org/10.1002/aet2.10057
  • Lu, K., Mardziel, P., Wu, F., Amancharla, P., & Datta, A. (2020). Gender bias in neural natural language processing. Logic, Language, and Security, 12300, 189-202. https://doi.org/10.1007/978-3-030-62077-6_14
  • Madaan, N., Mehta, S., Agrawaal, T. S., Malhotra, V., Aggarwal, A., Gupta, Y., & Saxena, M. (2018). Analyze, detect and remove gender stereotyping from Bollywood movies. In S. A. Friedler, & C. Wilson (Eds.), Proceedings of the Conference on Fairness, Accountability and Transparency (pp. 92-105). PMLR.
  • Madanikia, Y., & Bartholomew, K. (2014). Themes of lust and love in popular music lyrics from 1971 to 2011. SAGE Open, 4(3), 2158244014547179. https://doi.org/10.1177/2158244014547179
  • Manzini, T., Lim, Y. C., Tsvetkov, Y., & Black, A. W. (2019). Black is to criminal as Caucasian is to police: Detecting and removing multiclass bias in word embeddings. ArXiv, 1904.04047. https://doi.org/10.18653/v1/N19-1062
  • Mar, R. A. , & Oatley, K. (2008). The function of fiction is the abstraction and simulation of social experience . Perspectives on Psychological Science, 3 , 173-192 . https://doi.org/10.1111/j.1745–6924. 2008.00073.x
  • Matsuno, E., & Budge, S. L. (2017). Non-binary/genderqueer identities: A critical review of the literature. Current Sexual Health Reports, 9(3), 116-120. https://doi.org/10.1007/s11930-017-0111-8
  • Matthews, A., Grasso, I., Mahoney, C., Chen, Y., Wali, E., Middleton, T., Njie, M., & Matthews, J. (2021). Gender bias in natural language processing across human languages. Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.trustnlp-1.6
  • Maudslay, R. H., Gonen, H., Cotterell, R., & Teufel, S. (2020). It’s all in the name: Mitigating gender bias with name-based counterfactual data substitution. arXiv.org. https://arxiv.org/abs/1909.00871
  • McInroy, L. B., & Craig, S. L. (2016). Perspectives of LGBTQ emerging adults on the depiction and impact of LGBTQ media representation. Journal of Youth Studies, 20(1), 32-46. https://doi.org/10.1080/13676261.2016.1184243
  • McLaren, J. T., Bryant, S., & Brown, B. (2021). “See me! Recognize me!” An analysis of transgender media representation. Communication Quarterly, 69(2), 172-191. https://doi.org/10.1080/01463373.2021.1901759
  • Merchant, A., Rahimtoroghi, E., Pavlick, E., & Tenney, I. (2020). What happens to BERT embeddings during fine-tuning? arXiv, 2004.14448. https://doi.org/10.18653/v1/2020.blackboxnlp-1.4
  • Merrick, H. (2012). Challenging implicit gender bias in science: Positive representations of female scientists in fiction. Journal of Community Positive Practices, 12(4), 744-768.
  • Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. ArXiv.org. https://arxiv.org/abs/1301.3781
  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. ArXiv.org. https://arxiv.org/abs/1310.4546
  • Muhammed, M. (2020). Sexism in Wilde’s the picture of Dorian Gray: Linguistic analysis. Journal of Tikrit University for Humanities, 27(3), 11-26. https://doi.org/10.25130/jtuh.27.3.2020.24
  • Nadeem, M., Bethke, A., & Reddy, S. (2020). StereoSet: Measuring stereotypical bias in pretrained language models. arXiv, 2004.09456.
  • Nozza, D., Bianchi, F., & Hovy, D. (2022). Pipelines for social bias testing of large language models. In Proceedings of BigScience Episode# 5--Workshop on Challenges & Perspectives in Creating Large Language Models. Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.bigscience-1.6
  • Ochieng, D. (2012). Sexism in language: Do fiction writers assign agentive and patient roles equally to male and female characters? Journal of Language and Linguistic Studies, 8(2), 0-47.
  • Olson, D. (2012). From utterance to text: The bias of language in speech and writing. Harvard Educational Review, 47(3), 257-281. https://doi.org/10.17763/haer.47.3.8840364413869005
  • Otterbacher, J. (2015). Crowdsourcing stereotypes: Linguistic bias in metadata generated via GWAP. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 1955-1964). https://doi.org/10.1145/2702123.2702151
  • Pennebaker, J. W., Francis, M. E., & Booth, R. J. (2001). Linguistic inquiry and word count: Liwc 2001. Lawrence Erlbaum Associates.
  • Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word representation. Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1162
  • Phillips, J. (2006). Introduction. In Transgender on screen. Palgrave Macmillan. https://doi.org/10.1057/9780230596337_1
  • Rajendran, L., & Thesinghraja, P. (2014). The impact of new media on traditional media. Middle-East Journal of Scientific Research, 22(4), 609-616.
  • Rey, V. (2020). The art of minorities: Cultural representation in museums of the Middle East and North Africa. Edinburgh University Press. https://doi.org/10.3366/edinburgh/9781474443760.001.0001
  • Rezaeinia, S. M., Rahmani, R., Ghodsi, A., & Veisi, H. (2019). Sentiment analysis based on improved pre-trained word embeddings. Expert Systems With Applications, 117, 139-147. https://doi.org/10.1016/j.eswa.2018.08.044
  • Richards, C., Bouman, W. P., Seal, L., Barker, M. J., Nieder, T. O., & T’Sjoen, G. (2016). Non-binary or genderqueer genders. International Review of Psychiatry, 28(1), 95-102. https://doi.org/10.3109/09540261.2015.1106446
  • Said, E. W. (2016). Orientalism. In Social theory re-wired. Routledge.
  • Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513-523. https://doi.org/10.1016/0306-4573(88)90021-0
  • Schramowski, P., Turan, C., Andersen, N., Rothkopf, C. A., & Kersting, K. (2022). Large pre-trained language models contain human-like biases of what is right and wrong to do. Nature Machine Intelligence, 4(3), 258-268. https://doi.org/10.1038/s42256-022-00458-8
  • Sculos, B. W. (2017). Who’s afraid of ‘toxic masculinity’? Class Race Corporate Power, 5(3), 6. https://doi.org/10.25148/CRCP.5.3.006517
  • Shrum, L. J. (2009). Media consumption and perceptions of social reality: Effects and underlying processes. In J. Bryant and M. B. Oliver (Eds.), Media effects: Advances in theory and research (pp. 50-73). Routledge.
  • Smelik, A. (2007). Feminist film theory. In The cinema book (pp. 491-504). https://doi.org/10.5040/9781838710484.0065
  • Smiler, A. P., Shewmaker, J. W., & Hearon, B. (2017). From “I want to hold your hand” to “promiscuous”: Sexual stereotypes in popular music lyrics, 1960-2008. Sexuality & Culture, 21(4), 1083-1105. https://doi.org/10.1007/s12119-017-9437-7
  • Smith, S. L., & Granados, A. D. (2009). Content patterns and effects surrounding sex-role stereotyping on television and films. In J. Bryant and M. B. Oliver (Eds.), Media effects: Advances in theory and research (pp. 342-361). Routledge.
  • Stanczak, K., & Augenstein, I. (2021). A survey on gender bias in natural language processing. ArXiv, 2112.14168. https://doi.org/10.48550/arXiv.2112.14168
  • Stillman, P. G., & Johnson, S. A. (1994). Identity, complicity, and resistance in The handmaid’s tale. Utopian Studies, 5(2), 70-86.
  • Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune BERT for text classification? In Proceedings of the Chinese Computational Linguistics: 18th China National Conference (pp. 194-206). Springer. https://doi.org/10.1007/978-3-030-32381-3_16
  • Sun, T., Gaut, A., Tang, S., Huang, Y., ElSherief, M., Zhao, J., Mirza, D., Belding, E., Chang, K.-W., & Wang, W. Y. (2019). Mitigating gender bias in natural language processing: Literature review. Association for Computational Linguistics. https://doi.org/10.18653/v1/P19-1159
  • Sun, T., Liu, X., Qiu, X., & Huang, X. (2022). Paradigm shift in natural language processing. Machine Intelligence Research, 19(3), 169-183. https://doi.org/10.1007/s11633-022-1331-6
  • Sun, T., Webster, K., Shah, A., Wang, W. Y., & Johnson, M. (2021). They, them, theirs: Rewriting with gender-neutral English. ArXiv, 2102.06788. https://arxiv.org/abs/2102.06788
  • Sutton, A., Lansdall-Welfare, T., & Cristianini, N. (2018). Biased embeddings from wild data: Measuring, understanding and removing. In Proceedings of the 17th International Symposium IDA (pp. 328-339). Springer. https://doi.org/10.1007/978-3-030-01768-2_27
  • Thomas, D. C., Lawlor, D. A., & Thompson, J. R. (2007). Re: Estimation of bias in nongenetic observational studies using “mendelian triangulation” by Bautista et al. Annals of Epidemiology, 17(7), 511-513. https://doi.org/10.1016/j.annepidem.2006.12.005
  • Underwood, T., Bamman, D., & Lee, S. (2018). The transformation of gender in English-language fiction. Journal of Cultural Analytics, 3(2). https://doi.org/10.22148/16.019
  • Van Reenen, D. (2014). Is this really what women want? An analysis of fifty shades of grey and modern feminist thought. South African Journal of Philosophy, 33(2), 223-233. https://doi.org/10.1080/02580136.2014.925730
  • Vijay, D. (2019). Crazy rich Asians: Exploring discourses of orientalism, neoliberal feminism, privilege and inequality. Markets, Globalization & Development Review, 4(3). https://doi.org/10.23860/mgdr-2019-04-03-04
  • Wagner, C., Garcia, D., Jadidi, M., & Strohmaier, M. (2015). It’s a man’s Wikipedia? Assessing gender inequality in an online encyclopedia. In Proceedings of the International AAAI Conference on Web and Social Media (pp. 454-463). https://doi.org/10.1609/icwsm.v9i1.14628
  • Waisbord, S. (2004). Media and the reinvention of the nation. In The SAGE handbook of media studies. SAGE. https://doi.org/10.4135/9781412976077.n19
  • Wang, B., Wang, A., Chen, F., Wang, Y., & Kuo, C.-C. . J. (2019). Evaluating word embedding models: Methods and experimental results. APSIPA Transactions on Signal and Information Processing, 8. https://doi.org/10.1017/ATSIP.2019.12
  • West, J. B. (2010). Gender bias and stereotypes in young adult literature: A content analysis of novels for middle school students [Master’s thesis, University of North Carolina at Chapel Hill].
  • Wu, L., Yen, I. E. H., Xu, K., Xu, F., Balakrishnan, A., Chen, P.-Y., Ravikumar, P., & Witbrock, M. J. (2018). Word mover’s embedding: From Word2Vec to document embedding. ArXiv, 1811.01713. https://doi.org/10.18653/v1/D18-1482
  • Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Yin, B., & Hu, X. (2023). Harnessing the power of LLMs in practice: A survey on ChatGPT and beyond. arXiv, 2304.13712.
  • Zastrow, C., Kirst-Ashman, K. K., & Hessenauer, S. L. (2019). Empowerment series: Understanding human behavior and the social environment. Cengage Learning.
  • Zhang, W., Yoshida, T., & Tang, X. (2011). A comparative study of TF*IDF, LSI and multi-words for text classification. Expert Systems With Applications, 38(3), 2758-2765. https://doi.org/10.1016/j.eswa.2010.08.066
  • Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K.-W. (2017). Men also like shopping: Reducing gender bias amplification using corpus-level constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 2979-2989). https://doi.org/10.18653/v1/d17-1323
  • Zhao, Y. (2019). Crazy rich Asians: When representation becomes controversial. Markets, Globalization & Development Review, 4(3). https://doi.org/10.23860/mgdr-2019-04-03-03
  • Zhou, Y., & Srikumar, V. (2021). A closer look at how fine-tuning changes BERT. arXiv, 2106.14282. https://doi.org/10.18653/v1/2022.acl-long.75
  • Zhuo, T. Y., Huang, Y., Chen, C., & Xing, Z. (2023). Exploring AI ethics of ChatGPT: A diagnostic analysis. arXiv, 2301.12867.