Clickbait: Research, challenges and opportunities – A systematic literature review

Daniel Jácobo-Morales 1 * , Mauro Marino-Jiménez 1
More Detail
1 Facultad de Comunicación, Universidad San Ignacio de Loyola, Lima, PERU
* Corresponding Author
Online Journal of Communication and Media Technologies, Volume 14, Issue 4, Article No: e202458. https://doi.org/10.30935/ojcmt/15267
OPEN ACCESS   2891 Views   1220 Downloads   Published online: 03 Oct 2024
Download Full Text (PDF)

ABSTRACT

Clickbait is a concept whose research has been increasing since 2018. Four main approaches are distinguished: (1) the development of algorithms and programs to detect it, (2) the semantic techniques used in headlines and texts, (3) the awakening of curiosity in the audience, and (4) the credibility of the headlines. Therefore, the research is proposed as a systematic literature review with the objective of analyzing the trends in studies on clickbait in the Scopus and Web of Science databases from January 1, 2015, to December 31, 2023. For this, it uses the PRISMA declaration as a reference. That is, a simple random sampling technique and bibliographic analysis, according to the RSL guidelines. After applying the inclusion criteria, it obtained a final sample of 165 studies. Among the main results, it stands out that Europe (n = 77) has the largest number of works. Something similar happens with the English language. With 90%, is the one with the greatest dissemination. Finally, it established the significant themes, the most widespread theories, 11 properties that deepen the four initial approaches, and explain the use of the term. That helps to delimit a path for future research.

CITATION

Jácobo-Morales, D., & Marino-Jiménez, M. (2024). Clickbait: Research, challenges and opportunities – A systematic literature review. Online Journal of Communication and Media Technologies, 14(4), e202458. https://doi.org/10.30935/ojcmt/15267

REFERENCES

  • Agrawal, A. (2016). Clickbait detection using deep learning. In Proceedings of the 2nd International Conference on Next Generation Computing Technologies. https://doi.org/10.1109/NGCT.2016.7877426
  • Ahmad, I., Alqarni, M. A., Ali Almazroi, A., & Tariq, A. (2020). Experimental evaluation of clickbait detection using machine learning models. Intelligent Automation & Soft Computing, 26(6), 1335–1344. https://doi.org/10.32604/iasc.2020.013861
  • Aleixandre-Benavent, R., Castelló-Cogollos, L., & Valderrama-Zurián, J. (2020). Información y comunicación durante los primeros meses de COVID-19. Infodemia, desinformación y papel de los profesionales de la información [Information and communication during the first months of COVID-19. Infodemic, disinformation and the role of information professionals]. Profesional de la Información, 29(4). https://doi.org/10.3145/epi.2020.jul.08
  • Alves, L., Antunes, N., Agrici, O., Sousa, C., & Ramos, C. (2016). Click bait: You won’t believe what happens next! Fronteiras: Journal of Social, Technological and Environmental Science, 5(2), 196–213. https://doi.org/10.21664/2238-8869.2016v5i2.p196-213
  • Apresjan, V., & Orlov, A. (2022). Pragmatic mechanisms of manipulation in Russian online media: How clickbait works (or does not). Journal of Pragmatics, 195, 91–108. https://doi.org/10.1016/j.pragma.2022.02.003
  • Bauman, Z. (2013). Liquid modernity. John Wiley & Sons.
  • Bazaco, A., Redondo, M., & Sánchez-García, P. (2019). El clickbait, como estrategia del periodismo viral: Concepto y metodología [Clickbait, as a strategy of viral journalism: Concept and methodology]. Revista Latina de Comunicación Social, 74, 94–115. https://doi.org/10.4185/RLCS-2019-1323
  • Berryman, R., & Kavka, M. (2018). Crying on YouTube: Vlogs, self-exposure and the productivity of negative affect. Convergence, 24(1), 85–98. https://doi.org/10.1177/1354856517736981
  • Biyani, P., Tsioutsiouliklis, K., & Blackmer, J. (2016). 8 amazing secrets for getting more clicks: Detecting clickbaits in news streams using article informality [Paper presentation]. The 30th AAAI Conference on Artificial Intelligence. https://doi.org/10.1609/aaai.v30i1.9966
  • Blom, J. N., & Hansen, K. (2015). Click bait: Forward-reference as lure in online news headlines. Journal of Pragmatics, 76(76), 87–100. https://doi.org/10.1016/j.pragma.2014.11.010
  • Bourgonje, P., Moreno Schneider, J., & Rehm, G. (2017). From clickbait to fake news detection: An approach based on detecting the stance of headlines to articles. In Proceedings of the 2017 EMNLP Workshop: Natural Language Processing Meets Journalism (pp. 84–89). Association for Computational Linguistics. https://doi.org/10.18653/v1/W17-4215
  • Brogly, C., & Rubin, V. L. (2018). Detecting clickbait: Here’s how to do it. Canadian Journal of Information and Library Science, 42(3), 154–175. https://muse.jhu.edu/article/743050
  • Bronakowski, M., Al-khassaweneh, M., & Al Bataineh, A. (2023). Automatic detection of clickbait headlines using semantic analysis and machine learning techniques. Applied Sciences, 13(4), Article 2456. https://doi.org/10.3390/app13042456
  • Carcioppolo, N., Lun, D., & McFarlane, S. J. (2022). Exaggerated and questioning clickbait headlines and their influence on media learning. Journal of Media Psychology: Theories, Methods, and Applications, 34(1), 30–41. https://doi.org/10.1027/1864-1105/a000298
  • Castells, M. (1996). The information age: Economy, society and culture. Vol. I, The rise of the network society. Blackwell.
  • Chakraborty, A., Sarkar, R., Mrigen, A., & Ganguly, N. (2017). Tabloids in the era of social media? Understanding the production and consumption of clickbaits in Twitter. Proceeding of the ACM Human-Computer Interaction, 1(CSCW), Article 30. https://doi.org/10.1145/3134665
  • Chaparro-Domínguez, M.-Á., Segado-Boj, F., & González-Aguilar, J.-M. (2022). Análisis de las estrategias promocionales en Facebook de los diarios tradicionales y nativos digitales [Analysis of promotional strategies on Facebook of traditional and digital native newspapers]. Comunicação Mídia E Consumo, 19(56), 476–498. https://doi.org/10.18568/cmc.v19i56.2610
  • Chen, Y., Conroy, N., & Rubin, V. (2015). Misleading online content: Recognizing clickbait as “false news”. In Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection (pp. 15–19). Association for Computing Machinery. https://doi.org/10.1145/2823465.2823467
  • Chua, A. Y. K., Pal, A., & Banerjee, S. (2021). “This will blow your mind”: Examining the urge to click clickbaits. Aslib Journal of Information Management, 73(2), 288–303. https://doi.org/10.1108/AJIM-07-2020-0214
  • Daoud, D. M., & Abou El-Seoud, S. (2019). An effective approach for clickbait detection based on supervised machine learning technique. International Journal of Online and Biomedical Engineering, 15(3), 21–32. https://doi.org/10.3991/ijoe.v15i03.9843
  • Diez-Gracia, A., & Sánchez-García, P. (2022). The news gap in the “triple digital agenda”: The different interests of media, audience and networks. Communication & Society, 35(1), 63–80. https://doi.org/10.15581/003.35.1.63-80
  • Dimpas, P., & Sabellano, M. (2017). Filipino and English clickbait detection using a long short term memory recurrent neural network. In Proceedings of the International Conference on Asian Language Processing. https://doi.org/10.1109/IALP.2017.8300597
  • Dolgova, N., & Orekhova, Y. (2022). Specifics of appealing headlines in Russian mass media materials dedicated to science. Jurnal Komunikasi: Malaysian Journal of Communication Jilid, 38(4), 79–96. https://doi.org/10.17576/JKMJC-2022-3804-05
  • Duarte, J., & Baptista, J. S. (2024). Digital twin applications in the extractive industry–A short review. In J. Kacprzyk (Ed.), Studies in systems, decision and control (pp. 771–781). Springer. https://doi.org/10.1007/978-3-031-38277-2_61
  • Flórez-Vivar, J. M., & Zaharía, A. M. (2022). La praxis del “clickbait” y de the trust project: Riesgos y retos en los diarios digitales Españoles [The practice of clickbait and the trust project: Risks and challenges in Spanish digital newspapers]. Anàlisi: Quaderns de Comunicació i Cultura, (Extra 0), 5–23. https://doi.org/10.5565/rev/analisi.3463
  • García Orosa, B., Gallur Santorun, S., & López García, X. (2017). El uso del clickbait en cibermedios de los 28 países de la Unión Europea [The use of clickbait in the digital media of the 28 countries of the European Union]. Revista Latina de Comunicación Social, 72(72), 1261–1277. https://doi.org/10.4185/RLCS-2017-1218
  • García-Serrano, J. G., Romero-Rodríguez, L. M., & Gómez, Á. H. (2019). Análisis del “clickbaiting” en los titulares de la prensa Española contemporánea/Estudio de caso: Diario “El País” en Facebook [Analysis of “clickbaiting” in the headlines of contemporary Spanish press/Case study: “El País” newspaper on Facebook]. Estudios sobre el Mensaje Periodístico, 25(1), 197–212. https://doi.org/10.5209/esmp.63724
  • Ghanem, B., Rosso, P., & Rangel, F. (2020). An emotional analysis of false information in social media and news articles. ACM Transactions on Internet Technology, 20(2), Article 19. https://doi.org/10.1145/3381750
  • Hamel, R. (2013). The role of plurilingual models in research, scientific communication and higher education. Synergies Europe, 8(8), 53–66.
  • Hausken, K. (2020). Game theoretic analysis of ideologically biased clickbait or fake news and real news. Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, 30(2), 39–57. https://doi.org/10.37190/ord200203
  • Jamiu, M., Iyanda, L., Mustapha, L., & Trofimova, G. (2022). Headlines and misinformation in the Nigerian newspapers: Evidence of from herder-farmer crisis and ENDSARS protests. World of Media. Journal of Russian Media and Journalism Studies, 3(3), 46–68. https://doi.org/10.30547/worldofmedia.3.2022.2
  • Jenkins, H. (2006). Convergence culture: Where old and new media collide. New Your University Press.
  • Jung, A., Stieglitz S., Kissmer, T., Mirbabaie, M., & Kroll, T. (2022) Click me…! The influence of clickbait on user engagement in social media and the role of digital nudging. PLoS ONE, 17(6), Article e0266743. https://doi.org/10.1371/journal.pone.0266743
  • Kanižaj, I., Beck, B., Lechpammer, S., & Weidlich, I. (2022). Disappointed and dissatisfied the impact of clickbait headlines on public perceptions of credibility of media in Croatia. Media Literacy and Academic Research, 5(2), 82–94. https://www.mlar.sk/wp-content/uploads/2022/12/5_Igor-Kaniz%E2%95%A0iaj-Boris-Beck_Stela-Lechpammer_Igor-Weidlich-.pdf
  • Kaur, S., Kumar, P., & Kumaraguru, P. (2020). Detecting clickbaits using two-phase hybrid CNN-LSTM biterm model. Expert Systems with Applications, 151, Article 113350. https://doi.org/10.1016/j.eswa.2020.113350
  • Kazimianec, J. (2020). Once again on the question of the headlines of the ‘new media’ as an object of pragmatics and media ecology. Slavistica Vilnensis, 65(1), 117–130. https://doi.org/10.15388/SlavViln.2020.65(1).40
  • Küçükvardar, M. (2023). Tık odaklı habercilik çerçevesinde ekonomi haberlerinin incelenmesi [Analyzing economic news within the framework of click-oriented journalism]. Türkiye İletişim Araştırmaları Dergisi, (42), 145–168. https://doi.org/10.17829/turcom.1194831
  • Kuiken, J., Schuth, A., Spitters, M., & Marx, M. (2017). Effective headlines of newspaper articles in a digital environment. Digital Journalism, 5(10), 1300–1314. https://doi.org/10.1080/21670811.2017.1279978
  • Kwak, K. T., Hong, S. C., & Lee, S. W. (2018). An analysis of a repetitive news display phenomenon in the digital news ecosystem. Sustainability, 10(12), Article 4736. https://doi.org/10.3390/su10124736
  • Lazar, L., & Pop, M. I. (2021). Impact of celebrity endorsement and breaking news effect on the attention of consumers. Studia Universitatis “Vasile Goldis” Arad–Economics Series, 31(3), 60–74. https://doi.org/10.2478/sues-2021-0014
  • Lim, S. (2020). Academic library guides for tackling fake news: A content analysis. The Journal of Academic Librarianship, 46(5), Article 102195. https://doi.org/10.1016/j.acalib.2020.102195
  • Lischka, J. A., & Garz, M. (2023). Clickbait news and algorithmic curation: A game theory framework of the relation between journalism, users, and platforms. New Media & Society, 25(8), 2073–2094. https://doi.org/10.1177/14614448211027174
  • Liu, M. T., Xue, J., & Liu, Y. (2021). The mechanism leads to successful clickbait promotion in WeChat social media platforms. Asia Pacific Journal of Marketing and Logistics, 33(9), 1952–1973. https://doi.org/10.1108/APJML-08-2020-0562
  • Liu, T. (2022). Clickbait detection on WeChat: A deep model integrating semantic and syntactic information. Knowledge-Based Systems, 245, Article 108605. https://doi.org/10.1016/j.knosys.2022.108605
  • Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116(1), 75–98. https://doi.org/10.1037/0033-2909.116.1.75
  • Lu, Y., & Shen, C. (2023). Unpacking multimodal fact-checking: Features and engagement of fact-checking videos on Chinese TikTok (Douyin). Social Media + Society, 9(1). https://doi.org/10.1177/20563051221150406
  • Maleki, N., Padmanabhan, B., & Dutta, K. (2023). The effect of monetary incentives on health care social media content: Study based on topic modeling and sentiment analysis. Journal of Medical Internet Research, 25, Article e44307. https://doi.org/10.2196/44307
  • Maphosa, M., Doorsamy, W., & Paul, B. S. (2022). Factors influencing students’ choice of and success in STEM: A bibliometric analysis and topic modeling approach. IEEE Transactions on Education, 65(4), 657–669. https://doi.org/10.1109/te.2022.3160935
  • Marino-Jiménez, M., Flores-Núñez, A., Rojas-Noa, F., & Vásquez-Espinoza, P. (2023). Independent journalism for hybrid democracies: A systemic vision in three Latin American countries. Journalism Practice. https://doi.org/10.1080/17512786.2023.2279341
  • Masip, P., Díaz-Noci, J., Domingo, D., Micó-Sanz, J., & Salaverría, R. (2010). Investigación internacional sobre ciberperiodismo: Hipertexto, interactividad, multimedia y convergencia [International research on cyberjournalism: Hypertext, interactivity, multimedia and convergence]. El Profesional de la Información, 19(6), 568–576. https://doi.org/10.3145/epi.2010.nov.02
  • Mitchelstein, E., & Boczkowski, P. (2009). Between tradition and change: A review of recent research on online news production. Journalism, 10(5), 562–586. https://doi.org/10.1177/1464884909106533
  • Molyneux, L., & Coddington, M. (2020). Aggregation, clickbait and their effect on perceptions of journalistic credibility and quality. Journalism Practice, 14(4), 429–446. https://doi.org/10.1080/17512786.2019.1628658
  • Mourão, R., & Robertson, C. (2019). Fake news as discursive integration: An analysis of sites that publish false, misleading, hyperpartisan and sensational information. Journalism Studies, 20(14), 2077–2095. https://doi.org/10.1080/1461670X.2019.1566871
  • Mukherjee, P., Dutta, S., & De Bruyn, A. (2022). Did clickbait crack the code on virality? Journal of the Academy of Marketing Science, 50, 482–502. https://doi.org/10.1007/s11747-021-00830-x
  • Muslikhin, M., & Mulyana, D. (2021). The practice of McJournalism in Indonesia’s cyber media. Jurnal Komunikasi: Malaysian Journal of Communication, 37(2), 1–18. https://doi.org/10.17576/JKMJC-2021-3702-01
  • Naeem, B., Khan, A., Beg, M. O., & Mujtaba, H. (2020). A deep learning framework for clickbait detection on social area network using natural language cues. Journal of Computational Social Sciences, 3(3), 231–243. https://doi.org/10.1007/s42001-020-00063-y
  • Palau-Sampio, D. (2016). Reference press metamorphosis in the digital context: Clickbait and tabloid strategies in Elpais.com. Communication & Society, 29(2), 63–79. https://doi.org/10.15581/003.29.35924
  • Palau-Sampio, D., & Carratalá, A. (2022). Injecting disinformation into public space: Pseudo-media and reality-altering narratives. Profesional de la Información, 31(3). https://doi.org/10.3145/epi.2022.may.12
  • Pengnate, S. (2019). Shocking secret you won’t believe! Emotional arousal in clickbait headlines: An eye-tracking análisis. Online Information Review, 43(7), 1136–1150. https://doi.org/10.1108/OIR-05-2018-0172
  • Potthast, M., Gollub, T., Komlossy, K., Schuster, S., Wiegmann, M., Garces, E., Hagen, M., & Benno, S. (2018). Crowdsourcing a large corpus of clickbait on twitter. In Proceedings of the 27th International Conference on Computational Linguistics. Association for Computational Linguistics. https://aclanthology.org/C18-1127.pdf
  • PRISMA. (2024). Welcome to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) website! http://www.prisma-statement.org/?AspxAutoDetectCookieSupport=1
  • Prokofeva, N., & Akulovich, I. (2021). The language means of comicality in clickbait headings. Vestnik Volgogradskogo Gosudarstvennogo Universiteta, 20(3). 151–165. https://doi.org/10.15688/jvolsu2.2021.3.13
  • Pujahari, A., & Sisodia, D. S. (2021). Clickbait detection using multiple categorisation techniques. Journal of Information Science, 47(1), 118–128. https://doi.org/10.1177/0165551519871822
  • Putri, D., & Pratomo, D. (2022). Clickbait detection of Indonesian news headlines using fine-tune bidirectional encoder representations from transformers (BERT). Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, 7(2), 162–168. https://doi.org/10.25139/inform.v7i2.4686
  • Rastogi, S., & Bansal, D. (2023). A review on fake news detection 3T’s: Typology, time of detection, taxonomies. International Journal of Information Security, 22, 177–212. https://doi.org/10.1007/s10207-022-00625-3
  • Razaque, A., Alotaibi, B., Alotaibi, M., Amsaad, F., Manasov, A., Hariri, S., Yergaliyeva, B., & Alotaibi, A. (2022). Blockchain-enabled deep recurrent neural network model for clickbait detection. IEEE Access, 10, 3144–3163. https://doi.org/10.1109/ACCESS.2021.3137078
  • Rochlin, N. (2017). Fake news: Belief in post-truth. Library Hi Tech, 35(3), 386–392. https://doi.org/10.1108/LHT-03-2017-0062
  • Romero-Rodríguez, L. M., & Rivera-Rogel, D. (2019). Desinformación y posverdad en los medios digitales: Del astroturfing al click-baiting [Disinformation and post-truth in digital media: From astroturfing to click-baiting]. In L. M. Romero-Rodríguez, & D. Rivera-Rogel (Eds.), La comunicación en el ecosistema digital. Actualidad, retos y prospectivas (pp. 383–407). Pearson. https://www.romero-rodriguez.com/download/2208/
  • Romero-Rodríguez, L. M., Tejedor, S., & Castillo-Abdul, B. (2021). From the immediacy of the cybermedia to the need for slow journalism: Experiences from Ibero-America. Journalism Practice, 16(8), 1578–1596. https://doi.org/10.1080/17512786.2020.1870530
  • Salaverría, R. (2019). Digital journalism: 25 years of research. Review article. El Profesional de la Información, 28(1). https://doi.org/10.3145/epi.2019.ene.01
  • Sandrini, L., & Somogyi, R. (2023). Generative AI and deceptive news consumption. Economics Letters, 232, Article 111317. https://doi.org/10.1016/j.econlet.2023.111317
  • Saquete, E., Tomás, D., Moreda, P., Martínez-Barco, P., & Palomar, M. (2019). Fighting post-truth using natural language processing: A review and open challenges. Expert Systems with Applications, 141, Article 112943. https://doi.org/10.1016/j.eswa.2019.112943
  • Sarkis-Onofre, R., Catalá-López, F., Aromataris, E., & Lockwood, C. (2021). How to properly use the PRISMA statement. Systematic Reviews, 10, Article 117. https://doi.org/10.1186/s13643-021-01671-z
  • Scott, K. (2021). You won’t believe what’s in this paper! Clickbait, relevance and the curiosity gapv. Journal of Pragmatics, 175, 53–66. https://doi.org/10.1016/j.pragma.2020.12.023
  • Shang, L., Zhang, D., Wang, M., Lai, S., & Wang, D. (2019). Towards reliable online clickbait video detection: A content-agnostic approach. Knowledge-Based Systems, 182, Article 104851. https://doi.org/10.1016/j.knosys.2019.07.022
  • Skärlund, S. (2022). Ordagrann återgivning eller klickbete? Om citatteckenanvändning i tidningsrubriker [Verbatim rendering or clickbait? On the use of quotation marks in newspaper headlines]. Språk och Stil, 32(32), 137–170. https://doi.org/10.33063/diva-492999
  • Sladkevich, Z. (2019). Headlines in internet media services: Between informing and clickbaiting. Medialingüística, 6(3), 353–368. https://doi.org/10.21638/spbu22.2019.306
  • Steensen, S., & Ahva, L. (2017) Theories of journalism in a digital age. Journalism Practice, 9(1), 1–18. https://doi.org/10.1080/17512786.2014.928454
  • Thorne, S. (2022). #Emotional: Exploitation & burnout in creator culture. CLCWeb: Comparative Literature and Culture, 24(4). https://doi.org/10.7771/1481-4374.4088
  • Tian, J., Li, T., Zhao, J., Li, D., Sun, J., Li, Z., & Shi, R. (2023). Efficacy of different courses of acupuncture for diarrhea irritable bowel syndrome: A protocol for systematic review and meta-analysis. PLoS ONE, 18(12), Article e0295077. https://doi.org/10.1371/journal.pone.0295077
  • UNESCO. (2023). Desinformación en línea: La UNESCO presenta su plan de acción para regular las redes sociales [Online disinformation: UNESCO presents its action plan to regulate social media]. https://es.statista.com/grafico/31618/encuestados-que-encuentran-todos-casi-todos-los-dias-informacion-noticias-falsas-o-que-tergiversan-la-realidad/
  • Universidad de Valladolid. (2022). Web of Science y Scopus, las fuentes de los rankings universitarios [Web of Science and Scopus, the sources of university rankings]. https://rank.uva.es/2022/06/13/web-of-science-y-scopus-las-fuentes-de-los-rankings-universitarios/
  • Untari, L., Purnomo, L. A., Purnama, L. S., & Giyoto, G. (2023). Clickbait and translation: Proposing a typology of online news headline transcreation strategies. Studies in English Language and Education, 10(3), 1452–1466. https://doi.org/10.24815/siele.v10i3.29141
  • Wei, F., & Nguyen, U. T. (2022). An attention-based neural network using human semantic knowledge and its application to clickbait detection. IEEE Open Journal of the Computer Society, 3, 217–232. https://doi.org/10.1109/OJCS.2022.3213791
  • Wilson, D., & Sperber, D. (2004). La teoría de la relevancia [The theory of relevance]. Revista de Investigación Lingüística, 7, 233–283. https://revistas.um.es/ril/article/view/6691/6491
  • Zannettou, S., Sirivianos, M., Blackburn, J., & Kourtellis, N. (2019). The web of false information: Rumors, fake news, hoaxes, clickbait, and various other shenanigans. Journal of Data and Information Quality, 11(3), 1–37. https://doi.org/10.1145/3309699
  • Zheng, H. T., Chen, J. Y., Yao, X., Sangaiah, A. K., Jiang, Y., & Zhao, C. Z. (2018). Clickbait convolutional neural network. Symmetry, 10(5), Article 138. https://doi.org/10.3390/sym10050138
  • Zheng, J., Xu, K., & Wu, X. (2021). A deep model based on lure and similarity for adaptive clickbait detection. Knowledge-Based Systems, 214, Article 106714. https://doi.org/10.1016/j.knosys.2020.106714
  • Zhou, M., Xu, W., Zhang, W., & Jiang, Q. (2022). Leverage knowledge graph and GCN for fine-grained-level clickbait detection. World Wide Web, 25, 1243–1258. https://doi.org/10.1007/s11280-022-01032-3
  • Zhou, X., Jain, A., Phoha, V., & Zafarani, R. (2020). Fake news early detection: A theory-driven model. Digital Threats, 1(2), Article 12. https://doi.org/10.1145/3377478
  • Zuhroh, N., & Rakhmawati, N. (2019). Clickbait detection: A literature review of the methods used. Register Jurnal Ilmiah Teknologi Sistem Informasi, 6(1), 1–10. https://doi.org/10.26594/register.v6i1.1561