Exploring the impact of social media exposure patterns on people’s belief in fake news during COVID-19: A cross-gender study

Yanhong Wu 1, Hasrina Mustafa 2 *
More Detail
1 Universiti Sains Malaysia, Penang, MALAYSIA
2 Universiti Sains Malaysia, Kuala Lumpur, MALAYSIA
* Corresponding Author
Online Journal of Communication and Media Technologies, Volume 13, Issue 3, Article No: e202326. https://doi.org/10.30935/ojcmt/13117
OPEN ACCESS   1896 Views   1899 Downloads   Published online: 26 Mar 2023
Download Full Text (PDF)

ABSTRACT

During COVID-19, fake news on social media seriously threatened public health. As a solution to this problem, this study examined how social media exposure patterns affect people being deeply harmed by fake news. Based on cognitive dissonance theory, this study investigated the effect of intentional and incidental exposure on belief in fake news through the mediating role of confirmation bias. The results show that intentional exposure positively influences confirmation bias and belief in fake news. Incidental exposure is the opposite. Our results also show that intentional exposure and confirmation bias negatively influence incidental exposure. Furthermore, these relationships remain unchanged by gender. This study provides theoretical and empirical contributions to reducing people’s belief in fake news.

CITATION

Wu, Y., & Mustafa, H. (2023). Exploring the impact of social media exposure patterns on people’s belief in fake news during COVID-19: A cross-gender study. Online Journal of Communication and Media Technologies, 13(3), e202326. https://doi.org/10.30935/ojcmt/13117

REFERENCES

  • Ab Hamid, M., Sami, W., & Sidek, M. M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890, 012163. https://doi.org/10.1088/1742-6596/890/1/012163
  • Apuke, O. D., & Omar, B. (2020). Modelling the antecedent factors that affect online fake news sharing on COVID-19: The moderating role of fake news knowledge. Health Education Research, 35(5), 490-503. https://doi.org/10.1093/her/cyaa030
  • Arbuckle, J. L., & Wothke, W. (1999). Amos 4.0 user’s guide. SmallWaters Corporation
  • Awang, Z. (2012). Research methodology and data analysis second edition. UiTM Press.
  • Bago, B., Rand, D. G., & Pennycook, G. (2020). Fake news, fast and slow: Deliberation reduces belief in false (but not true) news headlines. Journal of Experimental Psychology: General, 149(8), 1608. https://doi.org/10.1037/xge0000729
  • Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130-1132. https://doi.org/10.1126/science.aaa1160
  • Barakat, K. A., Dabbous, A., & Tarhini, A. (2021). An empirical approach to understanding users’ fake news identification on social media. Online Information Review, 45(6), 1080-1096. https://doi.org/10.1108/OIR-08-2020-0333
  • Barberá, P., Jost, J. T., Nagler, J., Tucker, J. A., & Bonneau, R. (2015). Tweeting from left to right: Is online political communication more than an echo chamber? Psychological Science, 26(10), 1531-1542. https://doi.org/10.1177/0956797615594620
  • Bento, A. I., Nguyen, T., Wing, C., Lozano-Rojas, F., Ahn, Y.-Y., & Simon, K. (2020). Evidence from internet search data shows information-seeking responses to news of local COVID-19 cases. Proceedings of the National Academy of Sciences, 117(21), 11220-11222. https://doi.org/10.1073/pnas.2005335117
  • Blunch, N. (2012). Introduction to structural equation modeling using IBM SPSS statistics and AMOS. SAGE. https://doi.org/10.4135/9781526402257
  • Bodecka, M., Nowakowska, I., Zajenkowska, A., Rajchert, J., Kaźmierczak, I., & Jelonkiewicz, I. (2021). Gender as a moderator between present-hedonistic time perspective and depressive symptoms or stress during COVID-19 lock-down. Personality and Individual Differences, 168, 110395. https://doi.org/10.1016/j.paid.2020.110395
  • Bonnet, J. L., & Rosenbaum, J. E. (2020). “Fake news,” misinformation, and political bias: Teaching news literacy in the 21st century. Communication Teacher, 34(2), 103-108. https://doi.org/10.1080/17404622.2019.1625938
  • Bridgman, A., Merkley, E., Loewen, P. J., Owen, T., Ruths, D., Teichmann, L., & Zhilin, O. (2020). The causes and consequences of COVID-19 misperceptions: Understanding the role of news and social media. Harvard Kennedy School Misinformation Review, 1(3). https://doi.org/10.37016/mr-2020-028
  • Bronstein, M. V., Pennycook, G., Bear, A., Rand, D. G., & Cannon, T. D. (2019). Belief in fake news is associated with delusionality, dogmatism, religious fundamentalism, and reduced analytic thinking. Journal of Applied Research in Memory and Cognition, 8(1), 108-117. https://doi.org/10.1037/h0101832
  • Cacciatore, M. A., Yeo, S. K., Scheufele, D. A., Xenos, M. A., Brossard, D., & Corley, E. A. (2018). Is Facebook making us dumber? Exploring social media use as a predictor of political knowledge. Journalism & Mass Communication Quarterly, 95(2), 404-424. https://doi.org/10.1177/1077699018770447
  • Cassese, E. C., Farhart, C. E., & Miller, J. M. (2020). Gender differences in COVID-19 conspiracy theory beliefs. Politics & Gender, 16(4), 1009-1018. https://doi.org/10.1017/S1743923X20000409
  • Chang, C. (2021). Fake news: Audience perceptions and concerted coping strategies. Digital Journalism, 9(5), 636-659. https://doi.org/10.1080/21670811.2021.1923403
  • Chen, C.-Y., Kearney, M., & Chang, S.-L. (2021). Belief in or identification of false news according to the elaboration likelihood model. International Journal of Communication, 15(2021), 1263-1285.
  • Clayton, K., Blair, S., Busam, J. A., Forstner, S., Glance, J., Green, G., Kawata, A., Kovvuri, A., Martin, J., Morgan, E., Sandhu, M., Sang, R., Scholz-Bright, R., Welch, A. T., Wolff, A. G., Zhou, A., & Nyhan, B. (2020). Real solutions for fake news? Measuring the effectiveness of general warnings and fact-check tags in reducing belief in false stories on social media. Political Behavior, 42(4), 1073-1095. https://doi.org/10.1007/s11109-019-09533-0
  • Colleoni, E., & Corsaro, D. (2022). Critical issues in artificial intelligence algorithms and their implications for digital marketing. In R. Llamas, & R. Belk (Eds.), The Routledge handbook of digital consumption (pp. 166-177). Routledge. https://doi.org/10.4324/9781003317524-16
  • Collier, J. E. (2020). Applied structural equation modeling using AMOS: Basic to advanced techniques. Routledge. https://doi.org/10.4324/9781003018414
  • Currie Sivek, S., & Bloyd-Peshkin, S. (2017). Where do facts matter? Journalism Practice, 12(4), 400-421. https://doi.org/10.1080/17512786.2017.1307694
  • DeVito, M. A. (2017). From editors to algorithms: A values-based approach to understanding story selection in the Facebook news feed. Digital Journalism, 5(6), 753-773. https://doi.org/10.1080/21670811.2016.1178592
  • Di Domenico, G., Nunan, D., Sit, J., & Pitardi, V. (2021). Free but fake speech: When giving primacy to the source decreases misinformation sharing on social media. Psychology & Marketing, 38(10), 1700-1711. https://doi.org/10.1002/mar.21479
  • Diehl, T., & Lee, S. (2022). Testing the cognitive involvement hypothesis on social media: ‘News finds me’ perceptions, partisanship, and fake news credibility. Computers in Human Behavior, 128, 107121. https://doi.org/10.1016/j.chb.2021.107121
  • Dreyfuss, E., & Lapowsky, I. (2019). Facebook is changing news feed (again) to stop fake news. Wired. https://www.wired.com/story/facebook-click-gap-news-feed-changes/
  • Etheridge, B., & Spantig, L. (2020). The gender gap in mental well-being during the COVID-19 outbreak: Evidence from the UK. European Economic Review, 145, 104114. https://doi.org/10.1016/j.euroecorev.2022.104114
  • Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1-4. https://doi.org/10.11648/j.ajtas.20160501.11
  • Fan, X., Griffin, D. J., & Tagg, E. P. (2022). Lie judgment trigger sensitivity and truth-bias: truth default theory in intergroup communication. Communication Quarterly, 70(4), 448-468. https://doi.org/10.1080/01463373.2022.2079994
  • Fantl, J. (2021). Fake news vs. echo chambers. Social Epistemology, 35(6), 645-659. https://doi.org/10.1080/02691728.2021.1946201
  • Festinger, L. (1957). A theory of cognitive dissonance. Stanford University Press. https://doi.org/10.1515/9781503620766
  • Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public Opinion Quarterly, 80(S1), 298-320. https://doi.org/10.1093/poq/nfw006
  • Fosch-Villaronga, E., Poulsen, A., Søraa, R. A., & Custers, B. (2021). A little bird told me your gender: Gender inferences in social media. Information Processing & Management, 58(3), 102541. https://doi.org/10.1016/j.ipm.2021.102541
  • Galasso, V., Pons, V., Profeta, P., Becher, M., Brouard, S., & Foucault, M. (2020). Gender differences in COVID-19 attitudes and behavior: Panel evidence from eight countries. Proceedings of the National Academy of Sciences, 117(44), 27285-27291. https://doi.org/10.1073/pnas.2012520117
  • Garrett, R. K. (2017). The “echo chamber” distraction: Disinformation campaigns are the problem, not audience fragmentation. Journal of Applied Research in Memory and Cognition, 6(2017), 370-376. https://doi.org/10.1016/j.jarmac.2017.09.011
  • Gelfert, A. (2018). Fake news: A definition. Informal Logic, 38(1), 84-117. https://doi.org/10.22329/il.v38i1.5068
  • Gupta, A., Li, H., Farnoush, A., & Jiang, W. (2022). Understanding patterns of COVID-19 infodemic: A systematic and pragmatic approach to curb fake news. Journal of Business Research, 140, 670-683. https://doi.org/10.1016/j.jbusres.2021.11.032
  • Gwebu, K. L., Wang, J., & Zifla, E. (2021). Can warnings curb the spread of fake news? The interplay between warning, trust and confirmation bias. Behavior & Information Technology, 41(16), 3552-3573. https://doi.org/10.1080/0144929X.2021.2002932
  • Hameleers, M., & Van der Meer, T. G. (2020). Misinformation and polarization in a high-choice media environment: How effective are political fact-checkers? Communication Research, 47(2), 227-250. https://doi.org/10.1177/0093650218819671
  • Heiss, R., & Matthes, J. (2019). Does incidental exposure on social media equalize or reinforce participatory gaps? Evidence from a panel study. New Media & Society, 21(11-12), 2463-2482. https://doi.org/10.1177/1461444819850755
  • Hou, F., Bi, F., Jiao, R., Luo, D., & Song, K. (2020). Gender differences of depression and anxiety among social media users during the COVID-19 outbreak in China: A cross-sectional study. BMC Public Health, 20(1), 1-11. https://doi.org/10.1186/s12889-020-09738-7
  • Hua, J., & Shaw, R. (2020). Corona virus (COVID-19) “infodemic” and emerging issues through a data lens: The case of China. International Journal of Environmental Research and Public Health, 17(7), 2309. https://doi.org/10.3390/ijerph17072309
  • Ilieva, J., Baron, S., & Healey, N. M. (2002). Online surveys in marketing research. International Journal of Market Research, 44(3), 1-14. https://doi.org/10.1177/147078530204400303
  • Jonas, E., Schulz-Hardt, S., Frey, D., & Thelen, N. (2001). Confirmation bias in sequential information search after preliminary decisions: An expansion of dissonance theoretical research on selective exposure to information. Journal of Personality and Social Psychology, 80(4), 557. https://doi.org/10.1037/0022-3514.80.4.557
  • Jones-Jang, S. M., Mortensen, T., & Liu, J. (2021). Does media literacy help identification of fake news? Information literacy helps, but other literacies don’t. American Behavioral Scientist, 65(2), 371-388. https://doi.org/10.1177/0002764219869406
  • Khan, I., Haleem, A., & Javaid, M. (2020). Analyzing COVID-19 pandemic through cases, deaths, and recoveries. Journal of Oral Biology and Craniofacial Research, 10(4), 450-469. https://doi.org/10.1016/j.jobcr.2020.08.003
  • Kim, Y., Chen, H.-T., & De Zúñiga, H. G. (2013). Stumbling upon news on the Internet: Effects of incidental news exposure and relative entertainment use on political engagement. Computers in Human Behavior, 29(6), 2607-2614. https://doi.org/10.1016/j.chb.2013.06.005
  • Kingsbury, M., Reme, B.-A., Skogen, J. C., Sivertsen, B., Øverland, S., Cantor, N., Hysing, M., Petrie, K., & Colman, I. (2021). Differential associations between types of social media use and university students’ non-suicidal self-injury and suicidal behavior. Computers in Human Behavior, 115, 106614. https://doi.org/10.1016/j.chb.2020.106614
  • Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications.
  • Knobloch-Westerwick, S., Mothes, C., & Polavin, N. (2020). Confirmation bias, ingroup bias, and negativity bias in selective exposure to political information. Communication Research, 47(1), 104-124. https://doi.org/10.1177/0093650217719596
  • Laato, S., Islam, A. N., Islam, M. N., & Whelan, E. (2020). What drives unverified information sharing and cyberchondria during the COVID-19 pandemic? European Journal of Information Systems, 29(3), 288-305. https://doi.org/10.1080/0960085X.2020.1770632
  • Lachlan, K. A., Hutter, E., Gilbert, C., & Spence, P. R. (2021). Need for cognition and rumination: Alternate explanations for sex differences in disaster information seeking. Progress in Disaster Science, 11, 100180. https://doi.org/10.1016/j.pdisas.2021.100180
  • Lai, K., Xiong, X., Jiang, X., Sun, M., & He, L. (2020). Who falls for rumor? Influence of personality traits on false rumor belief. Personality and Individual Differences, 152, 109520. https://doi.org/10.1016/j.paid.2019.109520
  • Laufer, A., & Shechory Bitton, M. (2021). Gender differences in the reaction to COVID-19. Women & Health, 61(8), 800-810. https://doi.org/10.1080/03630242.2021.1970083
  • Lee, H. J., & Park, B.-W. (2020). How to reduce confirmation bias using linked open data knowledge repository. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 410-416). https://doi.org/10.1109/BigComp48618.2020.00-39
  • Lee, J. K., & Kim, E. (2017). Incidental exposure to news: Predictors in the social media setting and effects on information gain online. Computers in Human Behavior, 75, 1008-1015. https://doi.org/10.1016/j.chb.2017.02.018
  • Li, A., Wang, S., Cai, M., Sun, R., & Liu, X. (2021). Self-compassion and life-satisfaction among Chinese self-quarantined residents during COVID-19 pandemic: A moderated mediation model of positive coping and gender. Personality and Individual Differences, 170, 110457. https://doi.org/10.1016/j.paid.2020.110457
  • Liu, F., Xiao, B., Lim, E. T., & Tan, C.-W. (2017). Investigating the impact of gender differences on alleviating distrust via electronic word-of-mouth. Industrial Management & Data Systems, 117(3), 620-642. https://doi.org/10.1108/IMDS-04-2016-0150
  • Lokot, T., & Diakopoulos, N. (2016). News bots: Automating news and information dissemination on Twitter. Digital Journalism, 4(6), 682-699. https://doi.org/10.1080/21670811.2015.1081822
  • Luo, T., Chen, W., & Liao, Y. (2021). Social media use in China before and during COVID-19: Preliminary results from an online retrospective survey. Journal of Psychiatric Research, 140, 35-38. https://doi.org/10.1016/j.jpsychires.2021.05.057
  • Martel, C., Pennycook, G., & Rand, D. G. (2020). Reliance on emotion promotes belief in fake news. Cognitive Research: Principles and Implications, 5(1), 1-20. https://doi.org/10.1186/s41235-020-00252-3
  • Masip, P., Suau, J., & Ruiz-Caballero, C. (2020). Incidental exposure to non-like-minded news through social media: Opposing voices in echo-chambers’ news feeds. Media and Communication, 8(4), 53-62. https://doi.org/10.17645/mac.v8i4.3146
  • Matthes, J., Nanz, A., Stubenvoll, M., & Heiss, R. (2020). Processing news on social media: The political incidental news exposure model (PINE). Journalism, 21(8), 1031-1048. https://doi.org/10.1177/1464884920915371
  • Mauvais-Jarvis, F., Merz, N. B., Barnes, P. J., Brinton, R. D., Carrero, J.-J., DeMeo, D. L., De Vries, G. J., Epperson, C. N., Govindan, R., Klein, S. L., Lonardo, A., Maki, P. M., McCullough, L. D., Ragitz-Zagrosek, V., Regebsteiner, J. G., Rubin, J. B., Sandberg, K., & Suzuki, A. (2020). Sex and gender: Modifiers of health, disease, and medicine. The Lancet, 396(10250), 565-582. https://doi.org/10.1016/S0140-6736(20)31561-0
  • McGrath, A. (2017). Dealing with dissonance: A review of cognitive dissonance reduction. Social and Personality Psychology Compass, 11(12), e12362. https://doi.org/10.1111/spc3.12362
  • Mercier, H. (2016). Confirmation bias–myside bias. In R. F. Pohl (Ed.), Cognitive illusions: Intriguing phenomena in judgement, thinking and memory (pp. 109-124). Psychology Press. https://doi.org/10.4324/9781315696935-11
  • Mercier, H. (2018). The enigma of reason. In H. Mercier, & D. Sperber (Eds.), The enigma of reason. Harvard University Press. https://doi.org/10.2307/j.ctv2sp3dd8
  • Mishra, M. (2016). Confirmatory factor analysis (CFA) as an analytical technique to assess measurement error in survey research: A review. Paradigm, 20(2), 97-112. https://doi.org/10.1177/0971890716672933
  • Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 106(1), 213-228. https://doi.org/10.1007/s11192-015-1765-5
  • Mukhtar, S. (2021). Psychology and politics of COVID-19 misinfodemics: Why and how do people believe in misinfodemics? International Sociology, 36(1), 111-123. https://doi.org/10.1177/0268580920948807
  • Nanz, A., Heiss, R., & Matthes, J. (2020). Antecedents of intentional and incidental exposure modes on social media and consequences for political participation: A panel study. Acta Politica, 57, 235-253. https://doi.org/10.1057/s41269-020-00182-4
  • Nelson, J. L., & Taneja, H. (2018). The small, disloyal fake news audience: The role of audience availability in fake news consumption. New Media & Society, 20(10), 3720-3737. https://doi.org/10.1177/1461444818758715
  • Newburn, F. (2020). Gender differences in behavior and attitudes toward COVID-19: Perceived risk of infection, negative cognitive emotions, and sleep disturbances. Journal of Research in Gender Studies, 10, 117. https://doi.org/10.22381/JRGS10220207
  • Nicholson, D. H., Hopthrow, T., & Randsley de Moura, G. (2022). Gender, hidden profiles, and the individual preference effect. Journal of Applied Social Psychology, 52(8), 735-750. https://doi.org/10.1111/jasp.12846
  • Pang, H., Liu, J., & Lu, J. (2022). Tackling fake news in socially mediated public spheres: A comparison of Weibo and WeChat. Technology in Society, 70, 102004. https://doi.org/10.1016/j.techsoc.2022.102004
  • Pearson, G. D. H., & Knobloch-Westerwick, S. (2019). Is the confirmation bias bubble larger online? Pre-election confirmation bias in selective exposure to online versus print political information. Mass Communication and Society, 22(4), 466-486. https://doi.org/10.1080/15205436.2019.1599956
  • Peters, U. (2020). What is the function of confirmation bias? Erkenntnis, 87, 1351-1376. https://doi.org/10.1007/s10670-020-00252-1
  • Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879. https://doi.org/10.1037/0021-9010.88.5.879
  • Powers, E. (2017). My news feed is filtered? Awareness of news personalization among college students. Digital Journalism, 5(10), 1315-1335. https://doi.org/10.1080/21670811.2017.1286943
  • Purcell, K., Rainie, L., Mitchell, A., Rosenstiel, T., & Olmstead, K. (2010). Understanding the participatory news consumer. Pew Internet and American Life Project, 1, 19-21.
  • Quattrociocchi, W., Scala, A., & Sunstein, C. R. (2016). Echo chambers on Facebook. SSRN, 2795110. https://doi.org/10.2139/ssrn.2795110
  • Ratner, B. (2009). The correlation coefficient: Its values range between +1/-1, or do they? Journal of Targeting, Measurement and Analysis for Marketing, 17(2), 139-142. https://doi.org/10.1057/jt.2009.5
  • Salgotra, R., Gandomi, M., & Gandomi, A. H. (2020). Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries. Chaos, Solitons & Fractals, 140, 110118. https://doi.org/10.1016/j.chaos.2020.110118
  • Scheibenzuber, C., Hofer, S., & Nistor, N. (2021). Designing for fake news literacy training: A problem-based undergraduate online-course. Computers in Human Behavior, 121, 106796. https://doi.org/10.1016/j.chb.2021.106796
  • Serrano-Puche, J., Beatriz Fernández, C., & Rodríguez-Virgili, J. (2018). Political information and incidental exposure in social media: The cases of Argentina, Chile, Spain and Mexico. Doxa Comunicación [Doxa Communication], 27, 19-42. https://doi.org/10.31921/doxacom.n27a1
  • Shahin, S., Saldaña, M., & Gil de Zuniga, H. (2021). Peripheral elaboration model: The impact of incidental news exposure on political participation. Journal of Information Technology & Politics, 18(2), 148-163. https://doi.org/10.1080/19331681.2020.1832012
  • Shane, T., Willaert, T., & Tuters, M. (2022). The rise of “gaslighting”: Debates about disinformation on Twitter and 4chan, and the possibility of a “good echo chamber”. Popular Communication, 20(3), 178-192. https://doi.org/10.1080/15405702.2022.2044042
  • Sharevski, F., Alsaadi, R., Jachim, P., & Pieroni, E. (2022). Misinformation warnings: Twitter’s soft moderation effects on COVID-19 vaccine belief echoes. Computers & Security, 114, 102577. https://doi.org/10.1016/j.cose.2021.102577
  • Statista. (2021). Digital 2021: Global digital overview.
  • Steel, D. (2018). If the facts were not untruths, their implications were: Sponsorship bias and misleading communication. Kennedy Institute of Ethics Journal, 28(2), 119-144. https://doi.org/10.1353/ken.2018.0011
  • Stoltz, D. S., & Lizardo, O. (2018). Deliberate trust and intuitive faith: A dual‐process model of reliance. Journal for the Theory of Social Behavior, 48(2), 230-250. https://doi.org/10.1111/jtsb.12160
  • Subramaniam, M., Taylor, N. G., Jean, B. S., Follman, R., Kodama, C., & Casciotti, D. (2015). As simple as that?: Tween credibility assessment in a complex online world. Journal of Documentation, 71(3), 550-571. https://doi.org/10.1108/JD-03-2014-0049
  • Tan, W.-K., & Hsu, C. Y. (2022). The application of emotions, sharing motivations, and psychological distance in examining the intention to share COVID-19-related fake news. Online Information Review, 47(1), 59-80. https://doi.org/10.1108/OIR-08-2021-0448
  • Tandoc Jr, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news”: A typology of scholarly definitions. Digital Journalism, 6(2), 137-153. https://doi.org/10.1080/21670811.2017.1360143
  • Tandoc, E. C., Lee, J., Chew, M., Tan, F. X., & Goh, Z. H. (2021). Falling for fake news: The role of political bias and cognitive ability. Asian Journal of Communication, 31(4), 237-253. https://doi.org/10.1080/01292986.2021.1941149
  • Thelwall, M., & Thelwall, S. (2020). A thematic analysis of highly retweeted early COVID-19 tweets: Consensus, information, dissent and lockdown life. Aslib Journal of Information Management, 72(6), 945-962. https://doi.org/10.1108/AJIM-05-2020-0134
  • Thelwall, M., Bailey, C., Tobin, C., & Bradshaw, N.-A. (2019). Gender differences in research areas, methods and topics: Can people and thing orientations explain the results? Journal of Informetrics, 13(1), 149-169. https://doi.org/10.1016/j.joi.2018.12.002
  • Unkelbach, C., Koch, A., Silva, R. R., & Garcia-Marques, T. (2019). Truth by repetition: Explanations and implications. Current Directions in Psychological Science, 28(3), 247-253. https://doi.org/10.1177/0963721419827854
  • Van Brussel, S., Timmermans, M., Verkoeijen, P., & Paas, F. (2020). ‘Consider the opposite’–Effects of elaborative feedback and correct answer feedback on reducing confirmation bias–A pre-registered study. Contemporary Educational Psychology, 60, 101844. https://doi.org/10.1016/j.cedpsych.2020.101844
  • Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559
  • Wang, T.-L. (2020). Does fake news matter to election outcomes? The case study of Taiwan’s 2018 local elections. Asian Journal for Public Opinion Research, 8(2), 67-104.
  • Weeks, B. E., Lane, D. S., Kim, D. H., Lee, S. S., & Kwak, N. (2017). Incidental exposure, selective exposure, and political information sharing: Integrating online exposure patterns and expression on social media. Journal of Computer-Mediated Communication, 22(6), 363-379. https://doi.org/10.1111/jcc4.12199
  • Westerwick, A., Johnson, B. K., & Knobloch-Westerwick, S. (2017). Confirmation biases in selective exposure to political online information: Source bias vs. content bias. Communication Monographs, 84(3), 343-364. https://doi.org/10.1080/03637751.2016.1272761
  • Williams, P., Kern, M. L., & Waters, L. (2016). Exploring selective exposure and confirmation bias as processes underlying employee work happiness: An intervention study. Frontiers in Psychology, 7, 878. https://doi.org/10.3389/fpsyg.2016.00878
  • Wohn, D. Y., & Ahmadi, M. (2019). Motivations and habits of micro-news consumption on mobile social media. Telematics and Informatics, 44, 101262. https://doi.org/10.1016/j.tele.2019.101262
  • Wright, C., Gatlin, K., Acosta, D., & Taylor, C. (2022). Portrayals of the Black Lives Matter Movement in hard and fake news and consumer attitudes toward African Americans. Howard Journal of Communications, 34(1), 19-41. https://doi.org/10.1080/10646175.2022.2065458
  • Yang, C., Zhou, X., & Zafarani, R. (2021a). CHECKED: Chinese COVID-19 fake news dataset. Social Network Analysis and Mining, 11(1), 1-8. https://doi.org/10.1007/s13278-021-00766-8
  • Yang, Y., Kuo, H., & Fei, J. (2021b). China dealing with the impact of fake news: Roles of governments in the “post-truth” predicament. Communication, Technologies et développement [Communication, Technologies and Development], 10. https://doi.org/10.4000/ctd.5960
  • Yin, C., Sun, Y., Fang, Y., & Lim, K. (2018). Exploring the dual-role of cognitive heuristics and the moderating effect of gender in microblog information credibility evaluation. Information Technology & People, 31(3), 741-769. https://doi.org/10.1108/ITP-12-2016-0300
  • Zarocostas, J. (2020). How to fight an infodemic. The Lancet, 395(10225), 676. https://doi.org/10.1016/S0140-6736(20)30461-X
  • Zhang, S., Pian, W., Ma, F., Ni, Z., & Liu, Y. (2021). Characterizing the COVID-19 infodemic on Chinese social media: Exploratory study. JMIR Public Health and Surveillance, 7(2), e26090. https://doi.org/10.2196/26090
  • Zhao, H., Fu, S., & Chen, X. (2020). Promoting users’ intention to share online health articles on social media: The role of confirmation bias. Information Processing & Management, 57(6), 102354. https://doi.org/10.1016/j.ipm.2020.102354
  • Zhou, S. (2021). Impact of perceived risk on epidemic information seeking during the outbreak of COVID-19 in China. Journal of Risk Research, 24(3-4), 477-491. https://doi.org/10.1080/13669877.2021.1907609
  • Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., & Procter, R. (2018). Detection and resolution of rumors in social media. ACM Computing Surveys, 51(2), 1-36. https://doi.org/10.1145/3161603