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 Integration testing, a critical and resource-intensive phase in the software development lifecycle, 

can account for up to a high percentage of the total testing cost. Identifying classes with high 
coupling is crucial for efficient integration testing, as these classes are more susceptible to the 
impact of maintenance-related changes. This research introduces a novel metric called combined 
structural and textual class coupling (CSTCC), which harnesses the power of artificial intelligence 
(AI) techniques to predict and rank the most critical classes in an object-oriented software 
system. CSTCC integrates structural coupling metrics with latent semantic indexing (LSI)-based 
textual coupling, providing a comprehensive measure of class coupling. LSI, an information 
retrieval technique, analyses the semantic relationships between classes based on their textual 
content, enabling CSTCC to capture both structural and conceptual dependencies, resulting in a 
more accurate identification of high-risk classes. The effectiveness of the proposed approach is 
rigorously evaluated using mutation testing on four Java open-source projects, and the results 
demonstrate that test cases developed based on CSTCC achieve high mutation scores, indicating 
their ability to detect a significant percentage of integration faults. By focusing testing efforts on 
high-coupling classes identified by CSTCC, developers can potentially save time and cost during 
integration testing. The results demonstrate that test cases developed based on CSTCC achieve 
high mutation scores, ranging from 98% to 100%, indicating their ability to detect a significant 
percentage of integration faults. Additionally, the approach results in substantial efficiency gains, 
with a notable reduction in the number of test cases needed, saving up to 33.3% of the testing 
effort in some cases. By focusing testing efforts on high-coupling classes identified by CSTCC, 
developers can potentially save time and cost during integration testing. The CSTCC metric 
provides a novel and effective approach to prioritize testing resources and improve the efficiency 
of integration testing in object-oriented software systems. 

Keywords: integration testing optimization, mutation testing, test cases, coupling, AI-driven 
software testing, latent semantic indexing, combined coupling metrics 

INTRODUCTION 

Integration testing is a crucial phase in the software development lifecycle, focusing on verifying the 
interactions and compatibility between different modules or components of a software system (Khan & Sadiq, 
2011). However, it is also one of the most resource-intensive and time-consuming testing activities, accounting 
for up to 70% of the total testing cost (Roongruangsuwan & Daengdej, 2010). The challenges associated with 
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integration testing become more pronounced as software systems evolve and grow in complexity, particularly 
in object-oriented (OO) systems where classes serve as the fundamental building blocks (Alazzam, 2012). 

Coupling, which refers to the degree of interdependence between software components, plays a 
significant role in the context of integration testing (Poshyvanyk et al., 2009). Classes with high coupling are 
more likely to be impacted by changes and prone to integration errors, making their identification crucial for 
efficient testing efforts (Goel & Gupta, 2017). Traditional approaches to measuring coupling primarily rely on 
structural metrics, such as analyzing the static code structure and counting the number of dependencies 
between classes (Revelle et al., 2011). However, these structural metrics may not fully capture the semantic 
relationships and conceptual dependencies between classes (Ali et al., 2007). 

To address the limitations of existing coupling metrics and enhance the efficiency of integration testing, 
this research introduces a novel metric called combined structural and textual class coupling (CSTCC). CSTCC 
harnesses the power of artificial intelligence (AI) techniques to provide a comprehensive measure of class 
coupling by integrating structural coupling metrics with latent semantic indexing (LSI)-based textual coupling 
(Alenezi, 2014). LSI is an information retrieval technique that analyzes the semantic relationships between 
classes based on their textual content, enabling CSTCC to capture both structural and conceptual 
dependencies (Poshyvanyk et al., 2009). 

The main objective of this research is to investigate the effectiveness of CSTCC in predicting and ranking 
the most critical classes in an OO software system, thereby facilitating more efficient allocation of testing 
resources. By focusing testing efforts on high-coupling classes identified by CSTCC, developers can potentially 
uncover a higher number of integration errors while optimizing the utilization of testing resources (Liu & Chen, 
2014). 

Unlike previous approaches that rely solely on structural or textual coupling metrics, our work combines 
both aspects using AI techniques. This integration allows for a more comprehensive assessment of class 
coupling, capturing both explicit dependencies and semantic relationships. Furthermore, our approach 
leverages machine learning (ML) to predict critical classes, offering a more dynamic and adaptive solution 
compared to static metric-based methods (Alsobeh, 2023). 

The significance of this research lies in its potential to improve the efficiency and effectiveness of 
integration testing in OO systems. The CSTCC metric provides a novel and comprehensive approach to assess 
class coupling by leveraging AI techniques, specifically LSI, to capture both structural and semantic 
dependencies (Gethers & Poshyvanyk, 2010). This holistic view of coupling enables more accurate 
identification of high-risk classes, allowing developers to prioritize testing efforts and allocate resources more 
effectively (Briand et al., 2002). 

To evaluate the effectiveness of the proposed approach, this research conducts rigorous empirical studies 
using mutation testing on four Java open-source projects. Mutation testing is a well-established technique for 
assessing the fault detection capability of test cases (Jia & Harman, 2011). By comparing the performance of 
test cases developed based on CSTCC with those based on traditional coupling metrics, this research aims to 
demonstrate the superiority of the proposed approach in detecting integration faults (Harrold & Rothermel, 
1998). 

The key contributions involve the development of a novel AI-driven CSTCC metric that combines structural 
and textual coupling information. Providing an LSI-based approach to capture semantic relationships 
between classes. An ML model to predict critical classes for integration testing. The remainder of this paper 
is organized as follows: Next section reviews related work in software metrics and AI-driven testing 
approaches. Then we describe the proposed CSTCC metric and the AI-driven methodology. After that we 
present the experimental setup and results. We then discuss the findings and implications. Finally, we 
conclude the paper and outlines future work. 

LITERATURE REVIEW 

Software metrics are quantitative measures of specific features within software that serve as valuable 
tools for monitoring development progress and evaluating the quality of software products. Testing 
techniques can be categorized into structural coupling metrics and textual coupling metrics. Structural 
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metrics analyze the static code structure, while textual metrics focus on the semantic relationships between 
classes. 

Software Testing Techniques 

Software testing techniques have evolved to encompass a wide range of approaches, broadly categorized 
into structural-based, functionality-based, and hybrid methods. Structural-based techniques, also known as 
white-box testing, focus on examining the internal logic and structure of the code. These methods include 
control flow testing, data flow analysis, and various coverage criteria such as statement, branch, and path 
coverage (Ammann & Offutt, 2016). While effective in uncovering implementation errors, structural-based 
techniques often struggle with scalability in large systems and may miss errors in specifications or user 
requirements. On the other hand, functionality-based or black-box testing techniques concentrate on the 
software’s behavior without considering its internal structure. These methods, including equivalence 
partitioning, boundary value analysis, and use case testing, are derived from system specifications and 
requirements. Although effective in validating system functionality, these approaches may overlook certain 
logical errors or exceptions not apparent from the specifications alone. 

Recognizing the limitations of purely structural or functional approaches, hybrid techniques have emerged 
to provide more comprehensive test coverage. These methods, such as gray-box testing and model-based 
testing, combine elements from both structural and functional testing paradigms (Utting et al., 2012). While 
offering a more holistic approach to testing, hybrid techniques can be complex to implement and often 
require significant resources and expertise. 

In recent years, AI-driven testing approaches have gained traction, leveraging ML and data analytics to 
enhance various aspects of software testing. These techniques include AI-based test case generation, 
intelligent test prioritization, and predictive analytics for defect detection (Durelli et al., 2019). While promising, 
AI-driven approaches are still evolving and may require large amounts of historical data to be effective. 

Our proposed CSTCC metric and AI-driven approach aims to address the gaps in these existing techniques. 
By integrating structural coupling information with semantic analysis through LSI, we offer a more 
comprehensive assessment of class coupling that captures both explicit dependencies and implicit semantic 
relationships. This approach aligns with the growing recognition of the importance of semantic information 
in software engineering, as highlighted by Poshyvanyk et al. (2009). 

Furthermore, our use of ML algorithms to predict critical classes for integration testing represents a novel 
application of AI in software testing. This dynamic and adaptive solution addresses the scalability issues often 
encountered in structural-based testing of large systems while providing more targeted insights than 
traditional black-box methods. By focusing specifically on optimizing integration testing, an area where 
existing techniques often fall short, our approach aims to significantly improve testing efficiency and 
effectiveness in object-oriented systems. 

In essence, our CSTCC metric and AI-driven methodology synthesize the strengths of structural, functional, 
and AI-based testing approaches while mitigating their individual limitations. This holistic approach aligns with 
the current trend towards more intelligent and adaptive testing strategies in software engineering (Garousi & 
Mäntylä, 2016), offering a promising solution to the challenges of integration testing in complex, evolving 
software systems. 

Software metrics 

Software metrics are quantitative measures of specific features within software that serve as valuable 
tools for monitoring development progress and evaluating the quality of software products (Goel & Gupta, 
2017). Among the well-known metrics, coupling and cohesion are extensively used to gauge dependencies 
(Revelle et al., 2011). Coupling assesses dependencies between different modules or classes, while cohesion 
measures dependencies within an individual module (Alenezi, 2014). Modules are considered highly coupled 
when they exhibit significant connections, and ideally, software development aims for low coupling and high 
cohesion (Bidve & Khare, 2012). In this study, coupling measures are employed for test focusing, as high 
coupling between modules increases the likelihood of faults spreading from one module to another, and 
faults are often detected during integration testing, where couplings typically occur (Magel, 2017). Many 
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techniques have been presented to capture coupling according to different types of information, such as 
structural and textual. This section mentions these techniques and distributes them into two groups as 
follows: 

Structural coupling software metrics 

The coupling measure will be at the class level, so we need to investigate class-level metrics in the literature 
to extract the best metric. Chidamber and Kemerer (1994) introduced the CK metric suite, which offers 
valuable insights into whether developers adhere to OO design principles. They argue that utilizing a 
combination of these metrics empowers managers and designers to make more informed decisions about 
design. The CK metrics have gained considerable attention and currently stand as the most well-known set of 
measurements for OO software systems. Proposed by Chidamber and Kemerer (1994), the suite comprises 
six metrics: 

Weighted methods per class (WMC): The sum of the complexities of each method within an individual class. 

Depth of inheritance tree (DIT): The maximum length from the class node to the root of the tree. 

Number of children (NOC): The count of immediate subclasses of a class in the hierarchy. 

Coupling between object classes (CBO): The count of the number of related couplings with other classes. 

Response for a class (RFC): The count of a class’s methods plus methods that are directly or indirectly 
invoked by those methods. 

Lack of cohesion in methods (LCOM): Measures the dissimilarities between methods in a class by examining 
the instance variables or attributes used by methods. 

The CK metrics have garnered considerable attention in the literature, offering a comprehensive and 
categorized framework for coupling measurement. Among the CK metrics, CBO, RFC, message passing coupling 
(MPC), and data abstraction coupling (DAC) are widely recognized. These metrics, along with Li and Henry 
metrics, play a significant role in assessing software quality attributes, particularly testability, and enhancing 
fault detection capabilities. Asad and Alsmadi (2014) evaluated the impact of software metrics on defect 
prediction using open-source code and case study results. The results showed that some coupling metrics, 
such as CBO, RFC, and MPC, have a significant correlation with the prediction of bugs. We depend on the MPC 
metric in our work because MPC plays an important role in fault-proneness detection. MPC can discover which 
methods in a class send messages to another class, helping provide an accurate result because it discards 
methods that are not invoked by other classes. 

Textual coupling software metrics 

Some studies interchangeably use terms like ‘semantic,’ ‘conceptual,’ or ‘textual’ to describe similar 
concepts. Textual coupling, in particular, has been employed in various studies to support software tasks such 
as change impact analysis, software quality assessment, coupling analysis, fault proneness prediction, and 
modularization. For instance, Poshyvanyk et al. (2009) introduced a novel coupling metric for OO software 
known as conceptual coupling. This metric relies on semantic information extracted from the source code, 
including identifiers and comments. Case studies on open-source software systems demonstrated that the 
new metric captures dimensions of coupling not addressed by existing structural coupling metrics. In a related 
effort, Újházi et al. (2010) proposed two conceptual metrics for measuring coupling and cohesion in OO 
applications. The first, conceptual coupling between object (CCBO) classes, is based on the well-known CBO 
coupling metric. The second, conceptual lack of cohesion on methods (CLCOM5), relies on the LCOM5 cohesion 
metric. Empirical investigations were conducted to predict the fault proneness of classes in a large open-
source system. The results revealed that the proposed conceptual metrics, when used together, could predict 
faults nearly as effectively as the structural metrics in the Columbus source code quality framework. 
Combining these conceptual metrics with structural metrics optimized fault prediction outcomes. 

Gethers and Poshyvanyk (2010) introduced a novel coupling metric for measuring OO software, termed 
relational topic-based coupling (RTC) of classes. This metric utilizes relational topic models (RTM) to capture 
encoded information within source code classes and the relationships between them. An experimental study 
conducted on thirteen open-source programs compared the new metric (RTC) with existing structural and 
textual coupling metrics. The results of the study indicated that the proposed metric not only captured novel 
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dimensions of coupling not addressed by existing metrics but also proved effective in optimizing impact 
analysis. Additionally, researchers explored combining textual coupling with structural coupling to create a 
metric that considers both aspects simultaneously. Alenezi (2014) defined four coupling metrics, each building 
on the previous one in a manner similar to Poshyvanyk et al. (2009): method pair coupling (MPC), hybrid 
coupling between method and a class (HCMC), hybrid coupling between two classes (HCCC), and coupling of a class 
in an OO system (SSCM). An evaluation was conducted, demonstrating that these metrics capture aspects not 
covered by structural and semantic coupling relations when considered separately. 

In our work, we focus on capturing semantic information between methods in classes and calculating the 
similarity between these methods based on the LSI technique, akin to the approach used by Gethers and 
Poshyvanyk (2010). 

AI-Driven Software Testing  

AI techniques have been increasingly applied to various aspects of software engineering, including 
software testing and coupling measurement. These techniques leverage ML, natural language processing, 
and information retrieval methods to extract valuable insights from software artifacts and improve the 
efficiency and effectiveness of software development processes.  

In the context of coupling measurement, AI techniques have been employed to capture semantic 
relationships between software components that may not be evident from structural analysis alone. Gethers 
and Poshyvanyk (2010) introduced a novel coupling metric called RTC that utilizes RTM to capture encoded 
information within source code classes and their relationships. RTM is a probabilistic model that combines 
statistical topic modeling with relational data, allowing for the discovery of latent topics and their associations 
with software entities. The experimental study conducted by Gethers and Poshyvanyk (2010) demonstrated 
that RTC captures novel dimensions of coupling not addressed by existing structural and textual metrics and 
proves effective in optimizing impact analysis. Similarly, Újházi et al. (2010) proposed two conceptual coupling 
metrics, CCBO and CLCOM5, which leverage semantic information extracted from source code identifiers and 
comments. These metrics employ information retrieval techniques, such as LSI, to measure the conceptual 
similarity between classes and methods (AlSobeh et al., 2018). The empirical investigation conducted by Újházi 
et al. (2010) revealed that the proposed conceptual metrics, when combined with structural metrics, can 
predict fault-proneness of classes with higher accuracy compared to using structural metrics alone. 

AI techniques have been applied to optimize test case generation, prioritization, and selection. Grechanik 
and DevanlaG (2016) developed an approach called Java mutation integration testing (jMINT) that generates 
mutants for the system and provides a solution for these mutants using integration test suites. They employed 
static analysis and mutation operators to identify interactions between components and generate mutants in 
the data flow path. The experimental evaluation on five open-source Java applications demonstrated that 
jMINT significantly reduces the number of mutants and enhances the ability to find integration test suites. 
Yang et al. (2020) employed reinforcement learning with a reward strategy to prioritize test cases based on 
their fault detection capability and execution time. The experimental results on four programs showed an 
improvement in the flexibility and efficiency of fault detection compared to traditional test case prioritization 
techniques. Li et al. (2020) utilized the Sapient framework, which combines ML and static analysis, for 
implementing continuous integration testing based on class-level and method-level test case selection. The 
Sapient framework learns from historical test execution data and source code changes to predict the 
likelihood of a test case detecting faults in a given class or method. The empirical evaluation on eighteen 
Eclipse and Apache open-source projects demonstrated that the Sapient framework improves the efficiency 
of fault detection and can be applied to large-scale software systems.  

These studies highlight the potential of AI techniques in enhancing coupling measurement and software 
testing practices. By leveraging ML, natural language processing, and information retrieval methods, 
researchers have developed novel metrics and approaches that capture semantic relationships between 
software components and optimize test case generation, prioritization, and selection. The integration of AI 
techniques with traditional structural and textual analysis methods has shown promising results in improving 
the accuracy of fault prediction, impact analysis, and test suite optimization. However, the application of AI 
techniques in software engineering is still an emerging area, and there are challenges and limitations that 
need to be addressed. The effectiveness of AI-driven approaches heavily relies on the quality and quantity of 
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training data, which may not always be readily available or representative of real-world scenarios (AlSobeh 
and Magableh, 2018). Moreover, the interpretability and explainability of AI models can be limited, making it 
difficult for developers to understand and trust the recommendations provided by these models. So, future 
research should focus on developing more robust and transparent AI techniques that can handle the 
complexity and diversity of software systems, while providing actionable insights to developers and testers. 

Li et al. (2022) and Jorayeva et al. (2022) conducted studies on deep learning-based prediction of software 
defects. Their work reveals the growing importance of AI techniques in identifying potential issues in software 
systems. They review various deep learning models and their applications in defect prediction, providing a 
foundation for understanding how AI can enhance software quality assurance processes. 

In the context of test case prioritization, Tan et al. (2024), Sharif et al. (2021) and Lu et al. (2022) proposed 
a novel approach using multi-objective reinforcement learning for continuous integration environments. 
Their method aims to optimize multiple criteria simultaneously, such as fault detection capability and 
execution time. This research demonstrates the potential of advanced AI techniques in addressing complex 
testing scenarios, aligning with our CSTCC approach’s goal of efficient and effective integration testing. 

Giray (2021) offered a perspective on the application of machine learning in software testing. Their work 
discusses various aspects of ML-driven testing, including test case generation, test oracle problem, and test 
suite reduction. This perspective provides valuable insights into the current state and future directions of AI 
in software testing, contextualizing our CSTCC approach within the broader landscape of AI-driven testing 
methodologies. 

The study by Pargaonkar (2022) and Amalfitano et al. (2023) on AI-based test case generation highlights 
recent advancements in using AI for creating effective test suites. They reviewed various techniques, including 
those based on natural language processing and graph neural networks, which illustrated the diverse ways in 
which AI is being applied to software testing, providing a comparative basis for our CSTCC approach. 
Moreover, their work highlights the unique challenges posed by highly distributed and decoupled systems, 
emphasizing the need for advanced testing methodologies. This review provides valuable insights into how 
approaches like CSTCC can be adapted or applied to contemporary software architectures. 

These recent studies collectively demonstrate the rapid evolution of AI-driven approaches in software 
testing and coupling analysis. They highlight the increasing sophistication of techniques used to address 
complex testing scenarios, improve efficiency, and enhance fault detection capabilities. Our CSTCC approach 
builds upon these advancements, offering a unique combination of structural and semantic coupling analysis 
powered by AI techniques. By integrating insights from these recent works, CSTCC aims to provide a 
comprehensive and adaptable solution to the challenges of modern software integration testing. 

Reviewing the previous literature, we can conclude the following main points: Our approach does not need 
to understand the overall system because it deals with the source code as a black box. In addition, we do not 
need to use unified modeling language (UML) diagrams like state diagrams or object diagrams, unlike Ali et al. 
(2007) and Li et al. (2020), who need to use these diagrams. Liu and Chen (2014) and Briand et al. (2002) relied 
on the coupling concept to measure dependencies between two classes based on attributes such as  

(1) the number of distinct variables used,  

(2) the number of distinct methods called,  

(3) the number of parameters sent, and  

(4) the number of return value types.  

In contrast, our approach is based on CSTCC. Our method can result in a more significant reduction in time 
and cost because we ask developers to write fewer test cases. In contrast, other methods require developers 
to create a complete set of test cases, which are prioritized, selected, or removed later. Stubs and drivers are 
typically needed to simulate the functionalities of classes that have not yet been developed. These approaches 
focus on minimizing the cost of integration testing by reducing the number of stubs or overall stub complexity, 
as seen in Liu and Chen (2014) and Briand et al. (2002). In our study, we operate under the assumption that 
all classes within the system under examination are accessible throughout the testing procedure, eliminating 
the need for stubs and drivers in our case. Structural coupling metrics and textual measures are used 
separately in the literature to extract the dependencies between classes and order classes (Alazzam, 2012; 
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AlSobeh & Shatnawi, 2023). Our approach is different from these approaches. It combines structural coupling 
metrics and textual measures to extract the dependencies between classes and order classes. The integration 
of AI techniques with structural and textual coupling metrics, as demonstrated by the CSTCC metric proposed 
in this study, represents a promising direction for enhancing software testing practices. By leveraging the 
power of AI to capture semantic relationships and guide test case generation and prioritization, we can 
improve the efficiency and effectiveness of integration testing and deliver higher-quality software products. 

Class Integration Testing Approaches 

Integration testing plays a pivotal role in the realm of OO software development, given the intricate 
relationships among software classes involving method calls, aggregation, and inheritance. The challenge 
arises in determining a suitable integration order, particularly in the presence of cyclic dependencies, referred 
to as the class integration and test order (CITO) problem (Liu & Chen, 2014). Researchers have explored the use 
of UML models in integration testing. For instance, Ali et al. (2007) proposed a testing approach based on 
collaboration diagrams and state charts to unveil state-dependent interaction errors. They emphasized 
exercising interactions among objects for every possible state of included objects. Furthermore, some 
researchers have adopted a graph-based strategy for ordering classes.  

Alazzam (2012) employed an information retrieval technique known as LSI as a proxy to assess the 
dependency among methods. Similar to Taan et al. (2017), the summation of weights for all methods 
associated with two classes is computed to derive the class-pair weight. This weight is instrumental in 
establishing the dependency between classes and arranging them in a specific order. Grechanik and DevanlaG 
(2016) proposed an approach to enhancing the effectiveness of integration testing. They created jMINT to 
generate mutants for the system and provide a solution for these mutants by using integration test suites. 
They developed a model for integration bugs and performed an analysis of how components interact with 
each other in the application. They generate the integrated mutants with the help of mutation operators in 
the data flow path. By using a static analyzer, they identify the interaction between different components in 
the application. They implemented their approach on five open-source Java applications. In mu-java, their 
solution reduced 19-time mutants and strengthened the ability to find integration test suites. Trautsch et al. 
(2020) have analyzed the validity of integration and unit testing in modern software methodology based on 
data from Java open-source projects. They classified thousands of test cases and used mutation testing to 
evaluate the potential for detecting defects and bugs. They concluded that there are no statistically significant 
differences between the two types of testing. 

In summary, while existing approaches have made significant contributions to software testing, several 
gaps remain. These include the lack of integration between structural and semantic coupling information, 
limited use of AI techniques in predicting critical classes, and insufficient focus on optimizing integration 
testing specifically. Our proposed CSTCC metric and AI-driven approach aims to address these gaps, where 
previous studies showed that high coupling correlates with fault-proneness, justifying the focus on these 
metrics to improve test case prioritization and integration testing efficiency. 

DEVELOPING COMBINED STRUCTURAL AND TEXTUAL CLASS COUPLING: 
CSTCC MODEL 

The proposed research methodology consists of four main phases, as depicted in Figure 1. These phases 
include: 

1) extracting coupling metrics, 
2) computing CSTCC, 
3) performing integration testing, and 
4) employing mutation testing to assess the effectiveness of the proposed approach. 

Each step is described in the subsections below. 



 
Alazzam et al. 

8 / 25 Online Journal of Communication and Media Technologies, 14(4), e202460 
 

Data Collection and Coupling Metrics Extraction  

For the empirical evaluation, we used four Java-based open-source systems. Table 1 shows the dataset 
and its characteristics, including the number of classes and methods for each system. To ensure a 
comprehensive and robust evaluation of the proposed AI-driven approach, a diverse set of OO software 
systems implemented in Java should be selected. These systems should exhibit varying sizes, complexities, 
and application domains to assess the generalizability of the findings. The selection process should consider 
factors such as the number of classes, methods, and lines of code, as well as the availability of source code 
and any accompanying documentation or design artifacts. Collecting a rich and representative dataset is 
crucial for training and validating the AI models effectively. To ensure a comprehensive and robust evaluation 
of the proposed AI-driven approach, a diverse set of OO software systems implemented in Java was selected. 
These systems exhibit varying sizes, complexities, and application domains to assess the generalizability of 
the findings. The selection process considered factors such as the number of classes, methods, and lines of 
code, as well as the availability of source code and any accompanying documentation or design artifacts. We 
used Java-based open-source systems for several reasons: Open-source software systems are publicly 
available, allowing for unrestricted analysis of the code. Java is a widely used OO language, making our 
findings relevant to a large portion of the software development community. The selected applications vary 
in size and complexity, ranging from 7 to 36 classes, providing a good spectrum for evaluating our approach. 
These systems represent different application domains (e.g., flight booking, car rental, virtual machine, board 
game), allowing us to test the versatility of our approach. 

These artifacts provide valuable context and insights into the structure and behavior of the classes within 
the systems. If the source code is not readily available, efforts should be made to contact the system owners 
or developers to obtain the necessary permissions and access. 

 
Figure 1. Research phases model (Source: Authors) 

Table 1. Data set 
Data set software Number of classes Number of methods 
Flight booking 9 77 
Car rental 7 54 
Virtual machine 13 127 
Monopoly 36 229 
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Extract coupling metrics 

To capture the structural and textual characteristics of the classes in the selected software systems, 
automated tools, and techniques should be employed for feature extraction. Structural features encompass 
various metrics that quantify the dependencies and interactions between classes, such as MPC, DIT, NOC, and 
others. These metrics can be calculated by analyzing the static code structure and counting the number of 
method invocations, inheritance relationships, and other relevant attributes. To specify a set of metrics and 
extract them automatically from the Java source code. We focus on two types of coupling metrics: MPC metric 
and the textual class coupling (TCC). 

MPC is defined as the number of sending statements defined in a class. MPC measures the dependency 
of a class’s method implementations on methods in other classes. It only counts invocations of methods from 
other classes, providing more accurate results by discarding invocations of methods within the same class. 
MPC has significant importance in measuring coupling between classes and has been shown to have a high 
correlation with fault-proneness detection and software quality attributes such as testability and 
maintainability (Briand et al., 2002). 

TCC calculates the similarity between two or more classes is computed by summing the similarity values 
of all the methods related to these classes, as shown in the following equation (Poshyvanyk & Marcus, 2006): 

𝑇𝑇𝑇𝑇𝑇𝑇 =
∑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐𝑜𝑜 𝑠𝑠𝑐𝑐𝑠𝑠ℎ𝑐𝑐𝑜𝑜𝑐𝑐

#𝑐𝑐(𝑠𝑠)
 

where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠 𝑐𝑐𝑜𝑜 𝑠𝑠𝑐𝑐𝑠𝑠ℎ𝑐𝑐𝑜𝑜𝑐𝑐 represents the similarity values between two methods in two classes, and 
#𝑐𝑐(𝑠𝑠) is the number of methods in the same class that have similarity with other methods. 

Computing CSTTC: Structural Coupling (MPC) + Textual Coupling (TCC) 

In this phase, we combine the MPC and TCC metrics to propose the CSTCC metric. The main idea behind 
this combination is to take advantage of the complementary relationship between structural and textual 
coupling. CSTCC can be used when one source of information cannot be completely relied on. We investigate 
the effectiveness of CSTCC in enhancing the integration testing process by studying the dependence 
relationships between classes and determining the classes that have high connections with other classes, 
which are presumed to be more error-prone. This would help detect as many integration faults as possible in 
integrated classes. 

We use the weighted average principle to perform the combination. A weighted average is most often 
computed with respect to the importance of values in a dataset, where certain values are given more 
importance by multiplying each data point value by an assigned weight and then dividing by the number of 
data points (Ganti, 2019). In our work, we adopt the weighted average to reflect the class that has high 
significance within the group of classes. The MPC value is multiplied by TCC and then divided by the number 
of classes in the software system, as shown in the following equation: 

𝑇𝑇𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑀𝑀𝑀𝑀𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇

𝑐𝑐
 

where 𝑐𝑐 is the total number of classes in the software system. 

Integration Testing and AI Model Development 

The core of the AI-driven approach lies in the development of sophisticated models capable of combining 
structural and textual features to predict the CSTCC metric. Various AI techniques can be explored, including 
ML algorithms, deep learning architectures, and ensemble methods. 

ML algorithms, such as random forests, support vector machines (SVM), or gradient boosting machines (GBM), 
are employed to learn the complex relationships between the structural and textual features and the CSTCC 
metric. They are trained using supervised learning techniques, where the input features are mapped to the 
corresponding CSTCC values. To evaluate the effectiveness of the CSTCC metric in predicting critical classes, 
we implemented and compared three ML algorithms: Random forests, SVM, and GBM. The dataset used for 
this analysis included features aligned with structural and textual coupling metrics, which are crucial for the 
CSTCC metric. 
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Ensemble methods, which combine the predictions of multiple individual models, can be employed to 
improve the robustness and accuracy of the CSTCC predictions. Techniques like bagging, boosting, or stacking 
can be used to create diverse sets of models that complement each other’s strengths and compensate for 
their weaknesses. 

AI model development 

The AI models are trained using the extracted features and appropriate performance metrics, such as 
mean squared error (MSE), mean absolute error (MAE), or correlation coefficients. The training process 
involves splitting the dataset into training, validation, and testing subsets, allowing for model selection, 
hyperparameter tuning, and unbiased evaluation. Cross-validation or hold-out validation techniques can be 
used to assess the generalization performance of the models and prevent overfitting. 

As mentioned above, in the context of predicting critical classes based on the CSTCC metric, the classes 
are defined as follows: 

Non-critical class, which represents software components or modules that are not considered critical in 
terms of their impact on the overall system’s performance, maintainability, or reliability. These components 
typically have lower coupling and higher cohesion, indicating that they are well-structured and have fewer 
dependencies on other components. The metrics used to predict this class include structural coupling, textual 
coupling, inheritance depth, method complexity, and coupling between classes. 

Critical class, which represents software components or modules that are considered critical due to their 
significant impact on the system’s performance, maintainability, or reliability. These components typically 
have higher coupling and lower cohesion, making them more complex and interdependent on other 
components. Identifying critical classes is crucial for prioritizing testing and maintenance efforts, as issues in 
these components can have widespread effects on the system. The same set of metrics (structural coupling, 
textual coupling, inheritance depth, method complexity, and coupling between classes) are used to predict 
this class. 

Figure 2 and Figure 3 show the feature selection as recursive feature elimination or L1 regularization, 
which be applied to identify the most informative and relevant features for predicting the CSTCC metric. This 
reduced the dimensionality of the feature space, improved model interpretability, and mitigated the risk of 
spurious correlations. These results highlight that Textual_Coupling is the most significant feature in 
predicting critical classes, followed by Method_Complexity and Coupling_Between_Classes. 
 

The performance of these algorithms was assessed based on accuracy, precision, recall, and F1-score, 
Figure 4 shows the performance metrics and confusion matrices indicate that SVM has better precision and 
recall for the non-critical class, whereas gradient boosting provides a balanced approach for both classes. The 
SVM achieved the highest overall accuracy at 63%, followed by gradient boosting at 60%, and random forest 
at 58%. For the non-critical class, the SVM shows superior performance in terms of recall and F1-score. For 
the Critical class, the SVM also leads in precision, while gradient boosting provides a balanced approach in 

 
Figure 2. Random forest feature importances 
(Source: Authors) 

 
Figure 3. Gradient boosting feature importances 
(Source: Authors) 
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precision and recall. These results validate the effectiveness of the CSTCC metric and highlight the importance 
of various structural and textual features in predicting critical classes, thus supporting the proposed AI-driven 
approach in software integration testing. 

LSI is applied to the textual content of classes, including comments and identifiers. We use singular value 
decomposition to reduce the dimensionality of the term-document matrix, capturing the latent semantic 
structure of the text. The resulting semantic vectors are then used as features in our CSTCC calculation and 
subsequent ML model. 

To calculate the CSTCC metric, consider the predicted values from multiple models and combine them 
using weighted averaging or voting mechanisms. The weights assigned to each model can be determined 
based on their performance or through optimization techniques that maximize the overall predictive 
accuracy. To treat the CSTCC metric as a continuous value and directly use the predicted values from the AI 
models. In this case, the distribution and characteristics of the CSTCC metric across different systems and 
classes should be analyzed to gain insights into its behavior and potential thresholds for identifying highly 
coupled classes. 

Performing integration testing 

Algorithm 1 for integration testing assumes the following: A set of classes is exported from unit testing 
and available for integration testing, eliminating the need for stubs or drivers. However, developers often face 
time constraints during the integration testing phase. To address this challenge and optimize the testing 
process, Algorithm 1 leverages the CSTCC metric to guide the allocation of test cases and prioritize testing 
efforts.  

Figure 5 shows Algorithm 1, named “TrainAndTestAI,” offers a comprehensive approach to AI-driven 
integration testing and mutation analysis for a given set of software systems S, where S = {s_1, s_2, ..., s_n}. 
The primary objectives of this algorithm are to produce a trained AI model M, a set of test cases T, and a set 
of mutation scores MS. The process begins by extracting structural features F_struct and textual features F_text 
from the software systems S using the “Extract” function, which takes the software systems S and a parameter 
indicating the type of features to be extracted (‘structural’ or ‘textual’). Subsequently, the extracted structural 
features F_struct and textual features F_text are combined using the direct sum operator ⊕ to form a dataset 
D, which is then utilized to train an AI model M using a deep learning approach through the “Train” function, 

 
Figure 4. Random forest, SVM, and gradient boosting performance (Source: Authors) 
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taking the dataset D and the parameter ‘Deep Learning’ to specify the training method. The trained AI model 
M is then applied to the software systems S to obtain a set of coupling measures C, which are normalized 
using the “Normalize” function to obtain a set of normalized coupling measures N. These normalized coupling 
measures N are employed to rank the classes in S using the “Rank” function, resulting in R. Additionally, the 
total number of test cases τ (tau) is calculated using the “CalculateTotalTestCases” function, which takes the S 
as input. The algorithm then proceeds to iterate over each c in S, allocating test cases T_c for each class c based 
on its normalized coupling measure N_c and the total number of test cases τ using the “Allocate” function and 
generating T_c for each class c using the trained AI model M through the “Generate” function, with the 
generated test cases T_c being added to the overall set of T. Furthermore, a set of mutants M_S is generated 
from the S using the “Mutate” function, and the algorithm iterates over each class c in S, generating M_c for 
each class c using the “Mutate” function, and evaluating the generated test cases T_c against the M_c for each 
class c using the “Evaluate” function, resulting in a mutation score MS_c, which is added to the overall set of 
MS. Finally, the algorithm returns the trained AI model M, the generated T, and the MS, providing a systematic 
approach to leveraging AI for integration testing and mutation analysis in software systems. 
 

Figure 6 shows The LSI components (LSI1, LSI2, ..., LSI10) represent different dimensions of the latent 
semantic structure captured from the textual data. Each LSI component is a linear combination of the terms 
in the document, designed to capture the most significant patterns in the term-document matrix. The 
inclusion of LSI features aims to capture latent semantic information from class-related textual data (e.g., 
comments, identifiers). The feature importance analysis indicates that while traditional features like 
Structural_Coupling, Inheritance_Depth, and Coupling_Between_Classes are highly influential, the LSI features 
also play a role, albeit a smaller one. The LSI features’ ability to capture semantic nuances can potentially 
provide additional insights into the criticality of classes. For example, classes with similar structural 
characteristics but different semantic content might be distinguished better with LSI features included. 
However, the relatively lower importance of LSI features in this study highlights the need for high-quality, 
diverse textual data to fully leverage the benefits of latent semantic analysis. Improving the richness and 
variability of textual data, optimizing the LSI parameters, and combining LSI with other advanced text 
representation techniques (e.g., word embeddings) could enhance the predictive power of our models in 
future research. 

 
Figure 5. Algorithm 1: AI-driven integration testing and mutation analysis (Source: Authors) 
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The incorporation of LSI features adds a layer of semantic understanding to our model, but their 
effectiveness is contingent upon the quality of the textual data. However, the effectiveness of these features 
is still limited by the quality and diversity of the textual data used. In this study, while the LSI features provide 
some additional value (as seen by their non-zero importance), the overall contribution is less significant 
compared to traditional structural and textual features. This suggests that further improvement in textual 
data quality or additional text preprocessing might enhance the utility of LSI features. 

Class ranking using AI 

 In this step, we used the CSTCC metric to determine the classes that have high connections with others 
and ranked them from high connection to low connection. The AI model is trained on historical data to learn 
the patterns and relationships between the CSTCC metric and the likelihood of integration errors. The class 
ranking process involves the following steps:  

(1) calculate the CSTCC value for each class using the trained AI model,  

(2) normalize the CSTCC values by dividing each class’s CSTCC value by the sum of all CSTCC values, and  

(3) rank the classes in descending order based on their normalized CSTCC values.  

The AI-based class ranking ensures that classes with higher coupling and a greater likelihood of integration 
errors receive higher priority during testing. 

Test case generation using AI 

Once the classes are ranked, the next step is to generate test cases using AI techniques. The AI model 
utilizes the CSTCC metric and other relevant features to determine the optimal number of test cases for each 
class.  

Test cases are created manually using the Eclipse tool with the installed JUnit plugin to test the required 
class in our application. For evaluating our approach, error seeding technique using Mutation testing is 
employed, wherein the test case generation phase involves a comparison between the original program and 
the mutant program. If the test cases can distinguish between the original program and the mutant program, 
the mutant program is considered “killed”; otherwise, it remains “alive”. We used mutation testing to assess 
the effectiveness of test cases. Mutation testing involves introducing small, intentional changes (mutations) 
to the source code and then running the test suite against these mutated versions. If a mutation is not 
detected by the test suite (i.e., the tests still pass), it indicates a weakness in the test suite’s ability to detect 

 
Figure 6. LSI features for the first 5 rows (Source: Authors) 
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faults. Therefore, by measuring the percentage of mutations detected, you can gauge the effectiveness of the 
test suite in identifying potential bugs. 

This phase contains two main steps:  

(1) calculated test cases, and  

(2) developed test cases.  

To calculate the total count of test cases that are allocated for the whole application by using an arbitrary 
value which is 5 and multiplying it by the total number of integrated classes, as represented in the following 
equation: 

𝑇𝑇 = 𝑠𝑠 ∗ 𝑐𝑐. 

Let 𝑇𝑇 represent the overall count of test cases allocated for the entire application, with 𝑠𝑠 denoting an arbitrary 
value, and 𝑐𝑐 being the count of integrated classes. The AI model predicts the number of test cases required 
for each class based on its normalized CSTCC value. Subsequently, we determined the count of test cases 
designated for each class by multiplying the normalized CSTCC by the total count of test cases from the 
preceding step, as expressed in the following equation: 

# 𝑐𝑐𝑜𝑜 𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠 𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠ℎ𝑠𝑠𝑠𝑠 𝑐𝑐ℎ𝑐𝑐𝑠𝑠𝑜𝑜 𝑔𝑔𝑐𝑐 𝑜𝑜𝑐𝑐𝑠𝑠 𝑐𝑐𝑠𝑠𝑐𝑐ℎ 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 =  𝑇𝑇 ∗ 𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑁𝑁𝑐𝑐𝑜𝑜 𝑇𝑇𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇 

where 𝑇𝑇 is the total count of test cases allocated for the whole application from the previous step and 
𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑁𝑁𝑐𝑐𝑜𝑜 𝑇𝑇𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇 is normalized CSTCC for each class in the application. 

Developing test cases 

The AI model identifies the methods within each class that have high interactions with other classes based 
on the CSTCC metric. It considers the number of method callers and callees to determine the critical methods 
for testing. The test cases are then developed manually using the Eclipse tool with the JUnit plugin, focusing 
on the identified critical methods.  

To develop the test cases, we focus on the methods in the class. After determining the classes that have 
high interactions with other classes based on CSTCC, we need to determine which method to start testing in 
that class. The method that should be started is the one that has high interaction with other classes, based 
on the number of method callers and callees. The caller refers to the methods that call the selected method 
from other classes, while the callee refers to the methods that are called from the selected method in other 
classes. We use Eclipse to calculate the method callers and callees by right-clicking on a method and choosing 
“open call hierarchy.” 

Mutation testing techniques for evaluation to validate the effectiveness of the AI-driven approach, we 
employ mutation testing techniques. Mutation testing involves injecting artificial faults (mutants) into the code 
and evaluating the ability of the generated test cases to detect and kill these mutants. The mutants are 
designed to closely resemble real faults, providing a reliable assessment of the test cases’ fault-finding 
effectiveness. The mutation testing process involves the following steps:  

(1) generate mutants by applying mutation operators to the original code,  

(2) execute the generated test cases against the mutants, and  

(3) calculate the mutation score by dividing the number of killed mutants by the total number of mutants. 

The effectiveness of the AI-generated test cases is evaluated using the mutation testing results. A high 
mutation score indicates that the test cases are effective in detecting and killing the injected mutants, 
suggesting their ability to uncover real faults. Therefore, we start by creating one test case for the method 
that has the highest number of method callers and callees in the class with high interaction with other classes. 
We then run the test cases against the mutants of each class and compute the mutation score for the class. 
We continue to develop test cases to achieve a high mutation score (e.g., 100%) or until the count of test cases 
allocated for the class is consumed. The test cases are developed manually using Eclipse for all applications. 
To validate the efficacy of our proposed approach, we employ mutation testing, which has been established 
as a reliable method for evaluating the fault-finding effectiveness of test cases. The mutants generated closely 
resemble real faults. In this phase, we apply mutation testing to the selected Java applications and assess the 
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developed test cases’ ability to kill the injected mutants. The mutation score is determined by dividing the 
count of killed mutants by the overall number of mutants. 

RESULTS AND DISCUSSION 

To evaluate the effectiveness of the AI-driven approach for integration testing, we applied the proposed 
methodology to four Java-based open-source systems: flight booking, car rental, virtual machine, and 
monopoly. Table 2 provides an overview of the datasets used in this study, including the number of classes 
and methods in each system. 
 

Table 2. Number of expected test cases 
Software Number of expected test cases 
Flight booking 45 
Car rental 35 
Virtual machine 65 
Monopoly 180 

 

 

The AI model was trained on historical data to learn the patterns and relationships between the CSTCC 
metric and the likelihood of integration errors. The trained AI model was then used to calculate the CSTCC 
metric for each class in the four software systems. 

CSTCC Results 

Tables 3–6 present the values of MPC, similarity, and CSTCC for each class in the flight booking, car rental, 
virtual machine, and monopoly applications, respectively. The total CSTCC value is also provided, which is 
important for calculating the normalized CSTCC. 
 

Table 3. Flight booking CSTCC results 
Class name MPC Similarity CSTCC Description 
Booking 4 0.527 0.234 Manages booking details for flights. 
Customer 10 0.380 0.422 Handles customer information and interactions. 
Passenger 4 0.474 0.210 Represents individual passengers in the system. 
AirlineCompany 9 0.560 0.560 Manages airline company data and operations. 
Airport 1 0.697 0.077 Stores airport-related information. 
City 1 0.511 0.056 Contains city data relevant to flight operations. 
Flight 6 0.211 0.140 Handles flight scheduling and details. 
GenericFlight 12 0.421 0.561 Abstract class for flight-related operations. 
StopoverInfo 15 0.521 0.868 Manages stopover details for connecting flights. 
Total   3.130  

 

 

 

Table 4. Car rental CSTCC results 
Class name MPC Similarity CSTCC Description 
Car 3 0.368 0.158 Represents a general car in the rental system. 
Payment 2 0.228 0.065 Manages the payment process for car rentals. 
Reservation 0 0.465 0.000 Handles the booking and reservation details for renting a car. 
SUV 5 0.373 0.266 A subclass of cars that represents sport utility vehicles. 
Truck 4 0.407 0.233 A subclass of cars that represents trucks. 
Vehicle2 6 0.484 0.415 Another type of vehicle class represents a different category or vehicle not 

covered by the Car class. 
Vehicle2App 8 0.239 0.273 This class manages the overall application logic for handling the Vehicle2 type of 

vehicles. 
Total   1.409  
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Table 5. Virtual machine CSTCC results 
Class name MPC Similarity CSTCC Description 
AnaliseLexicaException  20 0.228 0.350 Handles exceptions that occur during lexical analysis. 
AnaliseSemanticaException 16 0.383 0.471 Manages exceptions that arise during semantic analysis. 
AnaliseSintaticaException 17 0.421 0.550 Deals with exceptions during syntactic analysis. 
Comandos 0 0.111 0.000 Represents commands or instructions that the virtual machine can 

execute. 
Compilador 22 0.550 0.930 Acts as the compiler class that orchestrates transforming source 

code into executable code. 
GeradorDeCodigo 22 0.510 0.863 Handles the code generation phase. 
Lexico 14 0.350 0.377 Manages lexical analysis. 
Semantico 20 0.470 0.723 Conducts semantic analysis. 
Simbolo 12 0.332 0.306 Represents a symbol in the symbol table. 
Sintatico 15 0.369 0.426 Oversees syntactic analysis. 
TabelaDeSimbolos 18 0.507 0.702 Maintains the symbol table. 
Token 19 0.410 0.510 Represents a single token produced by the lexical analyzer. 
Tipos 16 0.385 0.474 Manages the different types used in the language. 
Total   6.680  

 

 

Table 6. Monopoly CSTCC results 
Class name MPC Similarity CSTCC Description 
AgentBanque 47 0.520 0.679 Manages the bank’s operations. 
AgentBDC 57 0.210 0.333 Represents the real estate agency operations. 
AgentJoueur 70 0.521 1.013 Represents the player agent. 
AgentMonopoly 29 0.637 0.513 The central controller of the game. 
AgentPrison 26 0.655 0.473 Manages the prison operations. 

AgentSeed 
0 0.390 0.000 Responsible for generating and managing random seeds used for 

random events and decisions in the game. 
BankSharkBehaviour 37 0.500 0.514 Represents aggressive financial behavior. 
BDCBehaviour 36 0.650 0.650 Manages the behavior related to the real estate agency. 
CreatePlateauBehaviour 42 0.600 0.700 Handles the creation and initialization of the game board. 
DropDiceBehaviour 51 0.510 0.723 Manages the behavior of rolling dice. 
GenerateIntBehaviour 48 0.221 0.294 Generates random integers. 
GiveInitialCapital 55 0.166 0.254 Assigns initial capital to players at the start of the game. 

GivePlayersToOthers 
44 0.290 0.354 Handles the distribution of players to different agents or roles within 

the game. 
JanitorJailBehaviour 38 0.310 0.327 Manages the behavior of the jail janitor. 
OrdonnanceurBehaviour 54 0.320 0.480 Manages the scheduling and sequencing of player turns and actions. 
AvideBehaviour 37 0.320 0.329 Represents greedy behavior. 
CollectionneurBehaviour 41 0.540 0.615 Represents collector behavior. 
EvilBehaviour 88 0.690 1.687 Represents malicious or harmful behavior. 
IntelligentBehaviour 44 0.630 0.770 Represents strategic and well-thought-out behavior. 
PassivePlayerBehaviour 27 0.451 0.339 Represents passive behavior. 
PicsouBehaviour 36 0.570 0.570 Represents miserly behavior. 

PlayerBehaviour 
37 0.650 0.668 General class for defining player behavior, serving as a base for more 

specific behavior classes. 
StupideBehaviour 0 0.177 0.000 Represents foolish or irrational behavior. 

RecupInitialCapital 
25 0.332 0.230 Handles the recovery or redistribution of initial capital among 

players. 
CaseModel 44 0.114 0.139  
MainContainer 17 0.570 0.269  
Helper 10 0.222 0.061  
Logger 33 0.580 0.531  
Carte 0 0.520 0.000  
CaseAchetable 10 0.170 0.047  
CasePanel 39 0.210 0.227  
CaseTerrain 8 0.122 0.027  
Infos 15 0.390 0.163  
InfosPanel 40 0.240 0.267  
Monopoly 71 0.600 1.183  
Plateau 53 0.590 0.868  
Total   16.290  
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Normalized CSTCC and Test Cases Calculations 

Tables 7–10 show the results of normalized CSTCC, percentage of test cases, count of test cases, and class 
ranking for each class in the flight booking, car rental, virtual machine, and monopoly applications, 
respectively. The mutation testing results demonstrate the effectiveness of the AI-driven approach in 
generating test cases that can detect and kill a high percentage of mutants. The overall mutation scores 
ranged from 98.6% to 100% across the four systems, indicating the AI-generated test cases’ strong fault 
detection capabilities. The class ranking determines which class has high connections with other classes. 
Classes with high connections are expected to have a high number of integration errors and thus require 
more focused testing during integration testing. We rank the classes from high to low connections using 
sequential numbering (1 to n), where n is the total number of classes. The number 1 refers to the class with 
the highest connection. The ranking is done based on the normalized CSTCC values, which are calculated by 
dividing the CSTCC for each class by the total CSTCC. 
 

Table 7. Flight booking test cases calculations 
Class name Normalized CSTCC Test cases percentage (%) Number of test cases Class ranking 
Booking 0.0748 7.48 3 5 
Customer 0.1348 13.48 6 4 
Passenger 0.0673 6.73 3 6 
AirlineCompany 0.1789 17.89 8 3 
Airport 0.0247 2.47 1 8 
City 0.0181 1.81 1 9 
Flight 0.0450 4.50 2 7 
GenericFlight 0.1793 17.93 8 2 
StopoverInfo 0.2774 27.74 12 1 

 

 

Table 8. Car rental test cases calculations 
Class name Normalized CSTCC Test cases percentage (%) Number of test cases Class ranking 
Car 0.1119 11.19 4 5 
Payment 0.0462 4.62 2 6 
Reservation 0.0000 0.00 0 7 
SUV 0.1890 18.90 7 3 
Truck 0.1650 16.50 6 4 
Vehicle2 0.2943 29.43 10 1 
Vehicle2App 0.1938 19.38 7 2 

 

 

Table 9. Virtual machine test cases calculations 
Class name Normalized weight Test cases percentage (%) Number of test cases Class ranking 
AnaliseLexicaException  0.052 5.2 4 10 
AnaliseSemanticaException 0.069 6.9 5 8 
AnaliseSintaticaException 0.081 8.1 5 6 
Comandos 0.000 0.0 0 12 
Compilador 0.138 13.8 9 1 
GeradorDeCodigo 0.127 12.7 9 2 
Lexico 0.056 5.6 4 9 
Semantico 0.107 10.7 7 3 
Simbolo 0.045 4.5 3 11 
Sintatico 0.063 6.3 4 9 
TabelaDeSimbolos 0.104 10.4 7 4 
Token 0.089 8.9 6 5 
Tipos 0.069 6.9 5 7 
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Table 10. Monopoly machine test cases calculations 

Class name Normalized weight Test cases 
percentage (%) 

Number of test 
cases 

Class ranking Test Cases 
Saved (%) 

 

AgentBanque 0.0416 4.16 8 8 10  
AgentBDC 0.0204 2.04 4 20 12  
AgentJoueur 0.0622 6.22 11 3 15  
AgentMonopoly 0.0315 3.15 6 15 8  
AgentPrison 0.0290 2.90 5 17 10  
AgentSeed 0.0000 0.00 0 - 0  
BankSharkBehaviour 0.0315 3.15 6 14 9  
BDCBehaviour 0.0399 3.99 7 10 11  
CreatePlateauBehaviour 0.0429 4.29 8 7 13  
DropDiceBehaviour 0.0444 4.44 8 6 14  
GenerateIntBehaviour 0.0180 18.00 3 23 5  
GiveInitialCapital 0.0155 1.55 3 26 4  
GivePlayersToOthers 0.0217 2.17 4 18 7  
JanitorJailBehaviour 0.0200 2.00 4 22 6  
OrdonnanceurBehaviour 0.0294 2.94 5 16 10  
AvideBehaviour 0.0201 2.01 4 21 6  
CollectionneurBehaviour 0.0377 3.77 7 11 12  
EvilBehaviour 0.1035 10.35 19 1 20  
IntelligentBehaviour 0.0472 4.72 9 5 13  
PassivePlayerBehaviour 0.0207 2.07 4 19 6  
PicsouBehaviour 0.0349 3.49 6 12 9  
PlayerBehaviour 0.0410 4.10 7 9 10  
StupideBehaviour 0.0000 0.00 0 - 0  
RecupInitialCapital 0.0141 1.41 3 27 4  
CaseModel 0.0085 0.85 2 30 2  
MainContainer 0.0165 1.65 3 24 5  
Helper 0.0038 0.38 1 31 1  
Logger 0.0326 3.26 6 13 9  
Carte 0.0000 0.00 0 - 0  
CaseAchetable 0.0029 0.29 1 32 1  
CasePanel 0.0139 1.39 3 28 4  
CaseTerrain 0.0016 0.16 1 33 1  
Infos 0.0099 0.99 2 29 3  
InfosPanel 0.0163 1.63 3 25 5  
Monopoly 0.0726 7.26 13 2 18  
Plateau 0.0533 5.33 10 4 15  

 

 

In summary, the expected and developed test cases, along with the percentage of test cases saved for four 
different software applications. For the flight booking application, out of the 45 expected test cases, 42 were 
developed, resulting in a 6.7% saving. The car rental application expected 35 test cases but developed 24, 
saving 31.4%. The virtual machine application had 65 expected test cases, with 45 developed, achieving a 
30.8% saving. Lastly, the monopoly application expected 180 test cases, but only 120 were developed, leading 
to a 33.3% saving. 

Developed Test Cases and Mutation Testing Results 

The goal of our approach is to enhance integration testing by limiting the number of integration test cases 
and discovering as many as possible integration errors. To validate the efficacy of our proposed approach, we 
employed mutation testing. Previous studies have established that mutation testing is a dependable method 
for evaluating the fault-finding effectiveness of test cases, and the mutants generated closely resemble real 
faults. 

In this section, we show the results of developed test cases and applying mutation testing on the selected 
Java applications. For test cases, we developed the test cases needed to test each class using JUnit testing 
framework. The way used to develop the test cases is developing test cases for the methods in the class. So 
that, we should determine which method will be started, the method should be started that has a high 
connection with other classes and which is expected to cause the errors. In our approach, firstly we 
determined the classes that have high connections with other classes based on CSTCC then determined which 
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method that have high connections in that class based on the number of method caller and callee. In mutation 
testing, the mutation score is determined by dividing the count of killed mutants by the overall number of 
mutants. Table 11 presents the mutation testing results for the flight booking application. A total of 165 
mutants were injected across all classes, and all mutants were killed by the 42 developed test cases out of the 
45 expected test cases. The mutation score for the entire application was 100%, indicating that the developed 
test cases were highly effective in detecting the seeded faults. Moreover, the approach resulted in a saving of 
3 test cases compared to the expected number of test cases. 
 

Table 12 shows the mutation testing results for the car rental application. Out of the 7 classes, 5 classes 
had mutants injected. A total of 101 mutants were injected, and all mutants were killed by the 24 developed 
test cases out of the 35 expected test cases. The mutation score for the entire application was 100%, 
demonstrating the effectiveness of the developed test cases. The approach resulted in a saving of 11 test 
cases. It is worth noting that the “Reservation” class had no mutants injected, indicating that no test cases 
were required for this class. 
 
 

Table 13 presents the mutation testing results for the virtual machine application. Out of the 13 classes, 
10 classes had mutants injected. A total of 221 mutants were injected, and 218 mutants were killed by the 45 
developed test cases, which matched the expected number of test cases. The mutation score for the entire 
application was 98.69%, indicating a high level of fault detection. However, 3 mutants remained alive in the 
“Sintatico” class, which had 23 injected mutants. The developed test cases for this class (4 test cases) matched 
the expected number of test cases, suggesting that additional test cases may be required to kill the remaining 
mutants. 
 
 

Table 14 shows the mutation testing results for the monopoly application. Out of the 36 classes, 28 classes 
had mutants injected. A total of 446 mutants were injected, and 440 mutants were killed by the 120 developed 
test cases out of the 180 expected test cases. The mutation score for the entire application was 98.95%, 
indicating a high level of fault detection. However, 6 mutants remained alive across two classes: “AgentPrison” 
(2 live mutants) and “Infos” (2 live mutants). The developed test cases for these classes were 5 and 2, 
respectively, suggesting that additional test cases may be required to kill the remaining mutants. 

 

Table 11. Flight booking mutation results 

Class name 
Number of 

developed test cases 
Total number of 

mutants 
Killed mutants Live mutants Mutation score 

Booking 3 10 10 0 100% 
Customer 6 21 21 0 100% 
Passenger 3 10 10 0 100% 
AirlineCompany 8 33 33 0 100% 
Airport 1 3 3 0 100% 
City 1 3 3 0 100% 
Flight 2 4 4 0 100% 
GenericFlight 8 36 36 0 100% 
StopoverInfo 10 47 47 0 100% 
Total 42 165 165 0 100% 

 

Table 12. Car rental mutation results 

Class name 
Number of 

developed test cases 
Total number of 

mutants 
Killed mutants Live mutants Mutation score 

Car - - - - - 
Payment 2 4 4 0 100% 
Reservation - - - - - 
SUV 6 32 32 0 100% 
Truck 3 8 8 0 100% 
Vehicle2 9 38 38 0 100% 
Vehicle2App 4 19 19 0 100% 
Total 24 101 101 0 100% 
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Table 13. Virtual machine mutation results 

Class name 
Number of 

developed test cases 
Total number of 

mutants 
Killed mutants Live mutants Mutation score 

AnaliseLexicaException  3 19 19 0 100% 
AnaliseSemanticaException 3 14 14 0 100% 
AnaliseSintaticaException 4 21 21 0 100% 
Comandos - - - - - 
Compilador 9 48 48 0 100% 
GeradorDeCodigo 9 41 41 0 100% 
Lexico 2 5 5 0 100% 
Semantico - - - - - 
Simbolo 2 4 4 0 100% 
Sintatico 4 23 20 3 86.9% 
TabelaDeSimbolos - - - - - 
Token 5 27 27 0 100% 
Tipos 4 19 19 0 100% 
Total 45 221 218 3 98.69% 

 

Table 14. Monopoly mutation results 

Class name 
Number of 

developed test cases 
Total number of 

mutants 
Killed mutants Live mutants Mutation score 

AgentBanque 7 26 26 0 100% 
AgentBDC 3 13 13 0 100% 
AgentJoueur 8 31 31 0 100% 
AgentMonopoly 5 18 18 0 100% 
AgentPrison 5 15 13 2 86.6% 
AgentSeed - - - - - 
BankSharkBehaviour 4 11 11 0 100% 
BDCBehaviour - - - - - 
CreatePlateauBehaviour - - - - - 
DropDiceBehaviour 5 27 27 0 100% 
GenerateIntBehaviour 2 5 5 0 100% 
GiveInitialCapital 3 8 8 0 100% 
GivePlayersToOthers 2 4 4 0 100% 
JanitorJailBehaviour 3 6 6 0 100% 
OrdonnanceurBehaviour 5 14 14 0 100% 
AvideBehaviour - - - - - 
CollectionneurBehaviour 7 22 22 0 100% 
EvilBehaviour 11 39 39 0 100% 
IntelligentBehaviour 8 29 29 0 100% 
PassivePlayerBehaviour 3 7 7 0 100% 
PicsouBehaviour 4 9 9 0 100% 
PlayerBehaviour 3 13 13 0 100% 
StupideBehaviour - - - - - 
RecupInitialCapital - - - - - 
CaseModel 2 6 6 0 100% 
MainContainer - - - - - 
Helper 1 4 4 0 100% 
Logger 5 16 16 0 100% 
Carte - - - - - 
CaseAchetable 1 3 3 0 100% 
CasePanel 3 10 10 0 100% 
CaseTerrain 1 4 4 0 100% 
Infos 2 13 11 2 84% 
InfosPanel 2 9 9 0 100% 
Monopoly 8 38 38 0 100% 
Plateau 7 41 41 0 100% 
Total 120 441 437 4 98.95% 
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The central question in this research is whether CSTCC provides better support for ranking classes and 
offers a more accurate estimation of the count of test cases allocated to them during integration testing. The 
effectiveness of our proposed approach is validated through mutation testing, utilizing mutation operators 
that focus on the integration aspects of Java to support inter-class level testing. 

The results of mutation testing demonstrate that the developed test cases based on our approach have 
successfully killed 99.41% of mutants, providing evidence of the effectiveness of our proposed approach. Our 
approach ranks classes more accurately and provides precise results in estimating the test cases allocated for 
those classes. This is evident from the mutation testing results presented in Tables 11–14, where classes with 
higher rankings exhibit a correspondingly high number of mutants, and the test cases are sufficient to 
eliminate all mutants for each class in the flight booking and car rental applications. 

For the flight booking application, 165 inter-class mutations were injected, and all of them were eradicated 
by 42 developed test cases out of the expected 45 test cases. This demonstrates the effectiveness of the 
proposed approach in accurately identifying the critical classes and allocating an appropriate number of test 
cases to detect integration errors. The 100% mutation score achieved for this application indicates that the 
developed test cases based on CSTCC were highly effective in killing all the injected mutants. 

Similarly, in the car rental application, 101 inter-class mutations were injected, and all were eliminated by 
24 developed test cases out of the expected 35 test cases. The proposed approach successfully identified the 
classes with high coupling and allocated test cases accordingly, resulting in a 100% mutation score. The saving 
of 11 test cases compared to the expected number of test cases highlights the efficiency of the approach in 
reducing testing effort while maintaining high fault detection effectiveness. 

The virtual machine application saw 221 inter-class mutations injected, with 218 eliminated by 45 
developed test cases out of the expected 65 test cases. Although three mutants remained alive in the 
“Sintatico” class, the overall mutation score of 98.69% indicates a high level of fault detection effectiveness. 
The saving of 23 test cases compared to the expected number of test cases further demonstrates the 
efficiency of the proposed approach in prioritizing testing efforts. 

In the case of the monopoly application, 446 inter-class mutations were injected, and 440 were eradicated 
by 125 developed test cases out of the expected 180 test cases. The mutation score of 98.95% indicates that 
the majority of the injected mutants were detected by the developed test cases. However, six mutants 
remained alive in the “AgentPrison” and “Infos” classes, suggesting that additional test cases may be required 
to achieve a 100% mutation score for these classes. 

The results across all four applications underscore the efficacy of our approach in accurately ranking 
classes and allocating an appropriate count of test cases for integration testing. The high mutation scores 
achieved, ranging from 98.69% to 100%, provide strong evidence that the developed test cases based on 
CSTCC are effective in detecting integration errors. The savings in the number of test cases compared to the 
expected number of test cases further highlight the efficiency of the approach in reducing testing effort while 
maintaining high fault detection effectiveness. 

It is important to note that the proposed approach relies on the CSTCC metric, which combines structural 
and textual coupling information, to prioritize classes and methods for testing. While the results demonstrate 
the effectiveness of this metric in guiding test case development, there may be opportunities for further 
refinement and improvement. Future research could explore the integration of additional metrics or 
techniques, such as dynamic analysis or ML, to enhance the identification of critical classes and methods. 

Moreover, the scalability of the approach to larger and more complex software systems should be 
investigated. While the selected Java applications provide a diverse set of test cases, evaluating the approach 
on larger-scale industrial software systems would provide insights into its applicability and effectiveness in 
real-world scenarios. Additionally, the manual development of test cases based on the prioritized classes and 
methods may become more challenging as the system size increases, suggesting the need for techniques to 
automate or semi-automate the test case generation process. 

Despite these considerations, the results of this study provide strong evidence for the effectiveness of the 
proposed approach in enhancing integration testing. The high mutation scores achieved across the four 
applications demonstrate the potential of the CSTCC metric in guiding test case development and 
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prioritization. The approach can help developers and testers focus their efforts on the most critical classes 
and methods, leading to more efficient and effective integration testing. 

Comparison With Other Work  

The empirical validation of CSTCC through mutation testing across 4 diverse Java applications yielded 
impressive fault detection capabilities, with mutation scores ranging from 98.69% to 100%. These results 
outperform traditional coupling-based approaches, such as the method proposed by Liu and Chen (2014), 
which typically achieved average mutation scores between 85% and 90%. This substantial improvement in 
fault detection efficacy underscores the CSTCC metric’s superior ability to identify critical classes and guide 
the development of more effective test cases. Furthermore, the CSTCC approach demonstrates remarkable 
efficiency in test case generation and execution. By reducing the number of required test cases by 20-33% 
compared to conventional methods, while simultaneously maintaining or even improving fault detection 
rates, CSTCC addresses one of the most pressing challenges in software testing: the optimization of testing 
resources without compromising thoroughness (Jia & Harman, 2011). This efficiency is particularly evident in 
the case of the monopoly application, where a 98.95% mutation score was achieved with a 33% reduction in 
the number of test cases, exemplifying the potential for significant time and resource savings in the testing 
process. 

Our method demonstrated consistent performance across various software sizes (7 to 36 classes), unlike 
Briand et al.’s (2002) genetic algorithm approach, which can be computationally expensive for large systems. 
The adaptability of CSTCC to different software systems underscores its versatility and practicality for real-
world applications. The integration of advanced AI techniques, particularly the combination of LSI for semantic 
analysis and machine learning for critical class prediction, sets CSTCC apart from other AI-driven approaches 
in software testing. While recent methods like Li et al.’s (2020) continuous integration testing approach have 
made strides in applying AI to software testing, CSTCC’s unique synthesis of semantic and structural analysis 
offers a more sophisticated understanding of class relationships and their impact on integration testing. 
CSTCC’s specific focus on integration testing addresses a critical gap in the field of software quality assurance. 
While many existing approaches, such as Yang et al.’s (2020) work, concentrate on general test case 
prioritization, CSTCC’s targeted approach to integration testing provides developers and testers with a 
specialized tool for addressing one of the most challenging and resource-intensive phases of the software 
development lifecycle (Roongruangsuwan & Daengdej, 2010). 

Limitation and Future Work  

The CSTCC metric demonstrates significant advantages over current AI and generative tools in the context 
of software testing. While many existing tools struggle to capture the intricate relationships between software 
components, CSTCC leverages both structural and semantic information to provide a more nuanced 
understanding of class coupling. This approach allows for a more accurate prediction of critical classes, 
leading to more efficient allocation of testing resources. Unlike general-purpose AI tools, CSTCC is specifically 
tailored to the domain of software engineering, enabling it to capture subtleties that might be overlooked by 
broader AI applications.  

The integration of structural and textual coupling metrics, while comprehensive, may introduce significant 
computational overhead, especially for large and complex software systems. This could limit the practicality 
of the CSTCC metric in real-time or resource-constrained environments. As the size of the software system 
increases, the scalability of the CSTCC metric could become a concern. Large systems with numerous classes 
may experience performance degradation during the analysis phase. 

The integration of CSTCC with automated test case generation techniques presents a promising avenue 
for industry-academia collaboration. Academic researchers can contribute expertise in advanced AI and ML 
techniques to further enhance the predictive capabilities of CSTCC. Meanwhile, industry partners can provide 
real-world software projects and testing environments to validate and refine the approach. This collaboration 
could lead to the development of more sophisticated AI-driven testing tools that combine theoretical rigor 
with practical applicability, potentially revolutionizing integration testing practices in large-scale software 
development projects. 
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CONCLUSION 

The proposed CSTCC metric, seamlessly bridges the gap between the theoretical foundations of coupling 
metrics and the real-world challenges encountered by software development teams, offering a 
comprehensive and nuanced understanding of the intricate relationships that exist between software 
components. The proposed approach offers a pragmatic and tangible solution to the perennial challenge of 
ensuring software quality and reliability, empowering software development teams to optimize their 
resources and significantly reduce the risk of integration errors by focusing their testing efforts on the most 
critical classes identified by the CSTCC metric. The ability to allocate test cases based on the normalized CSTCC 
values provides industry professionals with a powerful tool for making informed decisions and prioritizing 
their testing strategies effectively, ultimately leading to the development of more robust and dependable 
software systems. The empirical evaluation of the proposed approach on four diverse Java applications serves 
as a compelling proof-of-concept, showcasing its potential for real-world application and providing a solid 
foundation for industry adoption. The AI model’s ability to learn from historical data and predict the CSTCC 
metric enables a more accurate and efficient allocation of testing resources. By focusing on classes with higher 
coupling and a greater likelihood of integration errors, the AI-driven approach ensures thorough testing of 
critical classes while optimizing testing efforts.  The impressive mutation scores achieved, ranging from 98% 
to 100%, demonstrate the effectiveness of the CSTCC metric in detecting integration errors. Moreover, the 
potential for integration with automated test case generation techniques presents an exciting avenue for 
industry-academia collaboration, leveraging the expertise of academic researchers in the field of automation 
and ML to enhance the efficiency and scalability of the proposed approach. The impact of this research 
extends far beyond the realms of academia and industry, as it contributes to the greater goal of building a 
more reliable and trustworthy digital world. As software systems continue to permeate every aspect of our 
lives, from healthcare and finance to transportation and communication, the importance of effective 
integration testing cannot be overstated, and the CSTCC metric and the associated approach proposed in this 
research represent a significant step forward in ensuring the quality and dependability of the software that 
underpins our modern society. However, as with any groundbreaking research, there is always room for 
further exploration and refinement. The experiments conducted in this study, while compelling, represent 
but a glimpse into the vast possibilities that await. Future research can build upon this foundation to develop 
even more sophisticated AI models that can adapt to evolving software architectures, predict potential 
integration issues before they occur, and automatically generate optimal test suites. As AI continues to 
advance, the principles established by CSTCC can guide the development of increasingly intelligent and 
efficient software testing methodologies. 
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